Influence of Cell Configuration and Long-Term Operation on Electrochemical Phosphorus Recovery from Domestic Wastewater

Yang Lei, Jorrit Christiaan Remmers, Michel Saakes, Renata D. Van Der Weijden*, Cees J.N. Buisman

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)

Abstract

Phosphorus (P) is an important, scarce, and irreplaceable element, and therefore its recovery and recycling are essential for the sustainability of the modern world. We previously demonstrated the possibility of P recovery by electrochemically induced calcium phosphate precipitation. In this Article, we further investigated the influence of cell configuration and long-term operation on the removal of P and coremoved calcium (Ca), magnesium (Mg), and inorganic carbon. The results indicated that the relative removal of P was faster than that of Ca, Mg, and inorganic carbon initially, but later, due to decreased P concentration, the removal of Ca and Mg became dominant. A maximum P removal in 4 days is 75% at 1.4 A m -2 , 85% at 8.3 A m -2 and 92% at 27.8 A m -2 . While a higher current density improves the removal of all ions, the relative increased removal of Ca and Mg affects the product quality. While the variation of electrode distance and electrode material have no significant effects on P removal, it has implication for reducing the energy cost. A 16-day continuous-flow test proved calcium phosphate precipitation could continue for 6 days without losing efficiency even when the cathode was covered with precipitates. However, after 6 days, the precipitates need to be collected; otherwise, the removal efficiency dropped for P removal. Economic evaluation indicates that the recovery cost lies in the range of 2.3-201.4 euro/kg P, depending on P concentration in targeted wastewater and electrolysis current. We concluded that a better strategy for producing a product with high P content in an energy-efficient way is to construct the electrochemical cell with cheaper stainless steel cathode, with a shorter electrode distance, and that targets P-rich wastewater.

Original languageEnglish
Pages (from-to)7362-7368
Number of pages7
JournalACS Sustainable Chemistry and Engineering
Volume7
Issue number7
DOIs
Publication statusPublished - 10 Mar 2019

Keywords

  • Calcium phosphate
  • Current density
  • Electrode distance
  • Energy consumption
  • Local high pH

Fingerprint Dive into the research topics of 'Influence of Cell Configuration and Long-Term Operation on Electrochemical Phosphorus Recovery from Domestic Wastewater'. Together they form a unique fingerprint.

Cite this