Abstract
Permafrost has become increasingly unstable as a result of surface warming; therefore it is crucial to improve our understanding of permafrost spatiotemporal dynamics to assess the impact of active layer thickening on future hydrogeological processes. However, direct determinations of permafrost active-layer thermal properties are few, resulting in large uncertainty in forecasts of active layer thickness. To assess how to reduce the uncertainty without expanding monitoring efforts, a total of 1,728 numerical 1D models were compared using three error measures against observed active layer temperature data from the Qinghai-Tibetan Plateau. Resulting optimized parameter values varied depending on the error measure used, but agree with reported ones: bulk volumetric heat capacity is 1.82–1.94 (Formula presented.) K, bulk thermal conductivity 1.0–1.2 W/m K and porosity 0.25–0.45 (Formula presented.). The active layer thickening rate varied significantly for the three error measures, as demonstrated by a (Formula presented.) years thawing time-lag between the error measures over a 100 years modeling period.
Original language | English |
---|---|
Article number | e2021GL093306 |
Journal | Geophysical Research Letters |
Volume | 48 |
Issue number | 16 |
DOIs | |
Publication status | Published - 28 Aug 2021 |
Keywords
- active layer
- permafrost
- thermal properties