TY - JOUR
T1 - Increasing market opportunities for renewable energy technologies with innovations in aquifer thermal energy storage
AU - Hoekstra, N.
AU - Pellegrini, M.
AU - Bloemendal, M.
AU - Spaak, G.
AU - Andreu Gallego, A.
AU - Rodriguez Comins, J.
AU - Grotenhuis, T.
AU - Picone, S.
AU - Murrell, A.J.
AU - Steeman, H.J.
AU - Verrone, A.
AU - Doornenbal, P.
AU - Christophersen, M.
AU - Bennedsen, L.
AU - Henssen, M.
AU - Moinier, S.
AU - Saccani, C.
PY - 2020/3/20
Y1 - 2020/3/20
N2 - Heating and cooling using aquifer thermal energy storage (ATES) has hardly been applied outside the Netherlands, even though it could make a valuable contribution to the energy transition. The Climate-KIC project “Europe-wide Use of Energy from aquifers” – E-USE(aq) – aimed to pave the way for Europe-wide application of ATES, through the realization and monitoring of six ATES pilot plants across five different EU countries. In a preceding paper, based on preliminary results of E-USE(aq), conclusions were already drawn, demonstrating how the barriers for this form of shallow geothermal energy can be overcome, and sometimes even leveraged as opportunities. Based on final pilot project results, key economic and environmental outcomes are now presented. This paper starts with the analysis of specific technological barriers: unfamiliarity with the subsurface, presumed limited compatibility with existing energy provision systems (especially district heating), energy imbalances and groundwater contamination. The paper then shows how these barriers have been tackled, using improved site investigation and monitoring technologies to map heterogeneous subsoils. In this way ATES can cost-efficiently be included in smart grids and combined with other sources of renewable (especially solar) energy, while at the same time achieving groundwater remediation. A comparative assessment of economic and environmental impacts of the pilots is included, to demonstrate the sustainability of ATES system with different renewables and renewable-based technologies. The paper concludes with an assessment of the market application potential of ATES, including in areas with water scarcity, and a review of climate beneficial impact.
AB - Heating and cooling using aquifer thermal energy storage (ATES) has hardly been applied outside the Netherlands, even though it could make a valuable contribution to the energy transition. The Climate-KIC project “Europe-wide Use of Energy from aquifers” – E-USE(aq) – aimed to pave the way for Europe-wide application of ATES, through the realization and monitoring of six ATES pilot plants across five different EU countries. In a preceding paper, based on preliminary results of E-USE(aq), conclusions were already drawn, demonstrating how the barriers for this form of shallow geothermal energy can be overcome, and sometimes even leveraged as opportunities. Based on final pilot project results, key economic and environmental outcomes are now presented. This paper starts with the analysis of specific technological barriers: unfamiliarity with the subsurface, presumed limited compatibility with existing energy provision systems (especially district heating), energy imbalances and groundwater contamination. The paper then shows how these barriers have been tackled, using improved site investigation and monitoring technologies to map heterogeneous subsoils. In this way ATES can cost-efficiently be included in smart grids and combined with other sources of renewable (especially solar) energy, while at the same time achieving groundwater remediation. A comparative assessment of economic and environmental impacts of the pilots is included, to demonstrate the sustainability of ATES system with different renewables and renewable-based technologies. The paper concludes with an assessment of the market application potential of ATES, including in areas with water scarcity, and a review of climate beneficial impact.
KW - Aquifer thermal energy storage
KW - District heating and cooling
KW - Geothermal energy
KW - Heating and cooling
KW - Photovoltaic-thermal module
KW - Pilot plant
KW - Remediation
KW - Technological innovation
KW - Water scarcity
U2 - 10.1016/j.scitotenv.2019.136142
DO - 10.1016/j.scitotenv.2019.136142
M3 - Article
AN - SCOPUS:85076949384
SN - 0048-9697
VL - 709
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 136142
ER -