Increasing harvest maturity of whole-plant corn silage reduces methane

B. Hatew*, A. Bannink, H. van Laar, L.H. de Jonge, J. Dijkstra

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

37 Citations (Scopus)


The objective of this study was to investigate the effects of increasing maturity of whole-plant corn at harvest on CH4 emissions by dairy cows consuming corn silage (CS) based diets. Whole-plant corn was harvested at a very early [25% dry matter (DM); CS25], early (28% DM; CS28), medium (32% DM; CS32), and late (40% DM; CS40) stage of maturity. In a randomized block design, 28 lactating Holstein-Friesian dairy cows, of which 8 were fitted with rumen cannula, received 1 of 4 dietary treatments designated as T25, T28, T32, and T40 to reflect the DM contents at harvest. Treatments consisted of (DM basis) 75% CS, 20% concentrate, and 5% wheat straw. Feed intake, digestibility, milk production and composition, energy and N balance, and CH4 production were measured during a 5-d period in climate respiration chambers after an adaptation to the diet for 12 d. Corn silage starch content varied between 275 (CS25) and 385 (CS40) g/kg of DM. Treatments did not affect DM intake (DMI), milk yield, or milk contents. In situ ruminal fractional degradation rate of starch decreased linearly from 0.098 to 0.059/h as maturity increased from CS25 to CS40. Apparent total-tract digestibility of DM, organic matter, crude protein, neutral detergent fiber, crude fat, starch, and gross energy (GE) decreased linearly with maturity. Treatments did not affect ruminal pH, volatile fatty acids, and ammonia concentrations, and volatile fatty acids molar proportions. The concentration of C18:3n-3 in milk fat decreased linearly, and the concentration of C18:2n-6 and the n-6:n-3 ratio increased linearly with maturity. A quadratic response occurred for the total saturated fatty acid concentration and total monounsaturated fatty acid concentration in milk fat. Methane production relative to DMI (21.7, 23.0, 21.0, and 20.1 g/kg) and relative to GE intake (0.063, 0.067, 0.063, and 0.060 MJ/MJ; values for T25, T28, T32, and T40, respectively) decreased linearly with maturity. Also, CH4 emission relative to fat- and protein-corrected milk tended to decrease linearly with maturity (13.0, 13.4, 13.2, and 12.1 g/kg of fat- and protein-corrected milk, for T25, T28, T32, and T40, respectively). Intake of GE and metabolizable energy, and energy retained, all expressed per unit of metabolic body weight, did not differ among treatments. Nitrogen intake, N use efficiency (milk N/N intake), and N balance were not influenced by treatments. Increasing maturity of whole-plant corn at harvest may offer an effective strategy to decrease CH4 losses with feeding CS without negatively affecting cow performance.
Original languageEnglish
Pages (from-to)354-368
JournalJournal of Dairy Science
Issue number1
Publication statusPublished - 2016


  • Corn silage
  • Dairy cow
  • Maturity
  • Methane
  • Starch


Dive into the research topics of 'Increasing harvest maturity of whole-plant corn silage reduces methane'. Together they form a unique fingerprint.

Cite this