TY - JOUR
T1 - In vivo fluorescence correlation microscopy (FCM) reveals accumulation and immobilization of Nod factors in root hair cell walls
AU - Goedhart, J.
AU - Hink, M.A.
AU - Visser, A.J.W.G.
AU - Bisseling, T.
AU - Gadella, T.W.J.
PY - 2000
Y1 - 2000
N2 - Fluorescence correlation microscopy (FCM) is a new single-molecule detection technique based on the confocal principle to quantify molecular diffusion and concentration of fluorescent molecules (particles) with sub-micron resolution. In this study, FCM is applied to examine the diffusional behaviour of fluorescent Nod factor analogues on living Vicia sativa root hairs. Three recently described Nod factors with a fluorescent acyl chain (Goedhart et al. Biochemistry 1999, 38, 10898-10907) were used. Plasmolysis of fluorescently labelled root hairs showed that the Nod factors are predominantly located in the cell wall, as hardly any fluorescence could be detected in the plasma membrane. After Nod factor-induced root hair deformation, the new outgrowth was not labelled, indicating a lack of migration of Nod factors to the newly synthesized cell wall. In agreement, FCM showed a > 1000-fold reduction of molecular mobility of the fluorescence Nod factors upon binding to the cell wall. In addition, FCM demonstrated that Nod factors, when exogenously applied in aqueous solution at 10 nM, markedly concentrate in the cell wall of root hairs (up to 50-fold). The feasibility of applying FCM for the study of living plant cells as well as the implications of our results for the perception of Nod factors are discussed.
AB - Fluorescence correlation microscopy (FCM) is a new single-molecule detection technique based on the confocal principle to quantify molecular diffusion and concentration of fluorescent molecules (particles) with sub-micron resolution. In this study, FCM is applied to examine the diffusional behaviour of fluorescent Nod factor analogues on living Vicia sativa root hairs. Three recently described Nod factors with a fluorescent acyl chain (Goedhart et al. Biochemistry 1999, 38, 10898-10907) were used. Plasmolysis of fluorescently labelled root hairs showed that the Nod factors are predominantly located in the cell wall, as hardly any fluorescence could be detected in the plasma membrane. After Nod factor-induced root hair deformation, the new outgrowth was not labelled, indicating a lack of migration of Nod factors to the newly synthesized cell wall. In agreement, FCM showed a > 1000-fold reduction of molecular mobility of the fluorescence Nod factors upon binding to the cell wall. In addition, FCM demonstrated that Nod factors, when exogenously applied in aqueous solution at 10 nM, markedly concentrate in the cell wall of root hairs (up to 50-fold). The feasibility of applying FCM for the study of living plant cells as well as the implications of our results for the perception of Nod factors are discussed.
U2 - 10.1046/j.1365-313x.2000.00656.x
DO - 10.1046/j.1365-313x.2000.00656.x
M3 - Article
VL - 21
SP - 109
EP - 119
JO - The Plant Journal
JF - The Plant Journal
SN - 0960-7412
IS - 1
ER -