TY - JOUR
T1 - In vitro batch fermentation of (un)saturated homogalacturonan oligosaccharides
AU - Zwolschen, J.W.
AU - Vos, A.P.
AU - Ariëns, R.M.C.
AU - Schols, H.A.
PY - 2024/4/1
Y1 - 2024/4/1
N2 - Pectin, predominantly present within plant cell walls, is a dietary fiber that potentially induces distinct health effects depending on its molecular structure. Such structure-dependent health effects of pectin-derived galacturonic acid oligosaccharides (GalA-OS) are yet largely unknown. This study describes the influence of methyl-esterification and ∆4,5-unsaturation of GalA-OS through defined sets of GalA-OS made from pectin using defined pectinases, on the fermentability by individual fecal inocula. The metabolite production, OS utilization, quantity and size, methyl-esterification and saturation of remaining GalA-OS were monitored during the fermentation of GalA-OS. Fermentation of all GalA-OS predominantly induced the production of acetate, butyrate and propionate. Metabolization of unsaturated GalA-OS (uGalA-OS) significantly increased butyrate formation compared to saturated GalA-OS (satGalA-OS), while satGalA-OS significantly increased propionate formation. Absence of methyl-esters within GalA-OS improved substrate metabolization during the first 18 h of fermentation (99 %) compared to their esterified analogues (51 %). Furthermore, HPAEC and HILIC-LC-MS revealed accumulation of specific methyl-esterified GalA-OS, confirming that methyl-esterification delays fermentation. Fermentation of structurally distinct GalA-OS results in donor specific microbiota composition with uGalA-OS specifically stimulating the butyrate-producer Clostridium Butyricum. This study concludes that GalA-OS fermentation induces highly structure-dependent changes in the gut microbiota, further expanding their potential use as prebiotics.
AB - Pectin, predominantly present within plant cell walls, is a dietary fiber that potentially induces distinct health effects depending on its molecular structure. Such structure-dependent health effects of pectin-derived galacturonic acid oligosaccharides (GalA-OS) are yet largely unknown. This study describes the influence of methyl-esterification and ∆4,5-unsaturation of GalA-OS through defined sets of GalA-OS made from pectin using defined pectinases, on the fermentability by individual fecal inocula. The metabolite production, OS utilization, quantity and size, methyl-esterification and saturation of remaining GalA-OS were monitored during the fermentation of GalA-OS. Fermentation of all GalA-OS predominantly induced the production of acetate, butyrate and propionate. Metabolization of unsaturated GalA-OS (uGalA-OS) significantly increased butyrate formation compared to saturated GalA-OS (satGalA-OS), while satGalA-OS significantly increased propionate formation. Absence of methyl-esters within GalA-OS improved substrate metabolization during the first 18 h of fermentation (99 %) compared to their esterified analogues (51 %). Furthermore, HPAEC and HILIC-LC-MS revealed accumulation of specific methyl-esterified GalA-OS, confirming that methyl-esterification delays fermentation. Fermentation of structurally distinct GalA-OS results in donor specific microbiota composition with uGalA-OS specifically stimulating the butyrate-producer Clostridium Butyricum. This study concludes that GalA-OS fermentation induces highly structure-dependent changes in the gut microbiota, further expanding their potential use as prebiotics.
KW - Fermentation
KW - Galacturonic acid
KW - Methyl-esterification
KW - Pectin
KW - Prebiotics
KW - ∆4,5 unsaturation
U2 - 10.1016/j.carbpol.2024.121789
DO - 10.1016/j.carbpol.2024.121789
M3 - Article
AN - SCOPUS:85182733604
SN - 0144-8617
VL - 329
JO - Carbohydrate Polymers
JF - Carbohydrate Polymers
M1 - 121789
ER -