Abstract
Detailed studies of microbial growth in bioelectrochemical systems (BESs) are required for their suitable design and operation. Here, we report the use of optical coherence tomography (OCT) as a tool for in situ and noninvasive quantification of biofilm growth on electrodes (bioanodes). An experimental platform is designed and described in which transparent electrodes are used to allow real-time, 3D biofilm imaging. The accuracy and precision of the developed method is assessed by relating the OCT results to well-established standards for biofilm quantification (chemical oxygen demand (COD) and total N content) and show high correspondence to these standards. Biofilm thickness observed by OCT ranged between 3 and 90 μm for experimental durations ranging from 1 to 24 days. This translated to growth yields between 38 and 42 mgCODbiomass gCODacetate 1 at an anode potential of 0.35 V versus Ag/AgCl. Time-lapse observations of an experimental run performed in duplicate show high reproducibility in obtained microbial growth yield by the developed method. As such, we identify OCT as a powerful tool for conducting in-depth characterizations of microbial growth dynamics in BESs. Additionally, the presented platform allows concomitant application of this method with various optical and electrochemical techniques.
Original language | English |
---|---|
Pages (from-to) | 2171-2178 |
Journal | ChemSusChem |
Volume | 11 |
Issue number | 13 |
DOIs | |
Publication status | Published - 11 Jul 2018 |
Keywords
- 3d imaging
- Bioelectrochemical systems
- Biofilms
- Microbial growth
- Tomography