Improving sub-seasonal forecast skill of meteorological drought: A weather pattern approach

Doug Richardson*, Hayley J. Fowler, Christopher G. Kilsby, Robert Neal, Rutger Dankers

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Dynamical model skill in forecasting extratropical precipitation is limited beyond the medium-range (around 15 d), but such models are often more skilful at predicting atmospheric variables. We explore the potential benefits of using weather pattern (WP) predictions as an intermediary step in forecasting UK precipitation and meteorological drought on sub-seasonal timescales. Mean sea-level pressure forecasts from the European Centre for Medium-Range Weather Forecasts ensemble prediction system (ECMWF-EPS) are post-processed into probabilistic WP predictions. Then we derive precipitation estimates and dichotomous drought event probabilities by sampling from the conditional distributions of precipitation given the WPs. We compare this model to the direct precipitation and drought forecasts from the ECMWF-EPS and to a baseline Markov chain WP method. A perfect-prognosis model is also tested to illustrate the potential of WPs in forecasting. Using a range of skill diagnostics, we find that the Markov model is the least skilful, while the dynamical WP model and direct precipitation forecasts have similar accuracy independent of lead time and season. However, drought forecasts are more reliable for the dynamical WP model. Forecast skill scores are generally modest (rarely above 0.4), although those for the perfect-prognosis model highlight the potential predictability of precipitation and drought using WPs, with certain situations yielding skill scores of almost 0.8 and drought event hit and false alarm rates of 70 % and 30 %, respectively.

Original languageEnglish
Pages (from-to)107-124
Number of pages18
JournalNatural Hazards and Earth System Sciences
Volume20
Issue number1
DOIs
Publication statusPublished - 14 Jan 2020

Fingerprint Dive into the research topics of 'Improving sub-seasonal forecast skill of meteorological drought: A weather pattern approach'. Together they form a unique fingerprint.

  • Cite this