Impacts of urban expansion on nitrogen and phosphorus flows in the food system of Beijing from 1978 to 2008

L. Ma, J. Guo, G.L. Velthof, Y. Li, Q. Chen, W. Ma, O. Oenema, F. Zhang

Research output: Contribution to journalArticleAcademicpeer-review

66 Citations (Scopus)

Abstract

Rapid growth of metropolitan areas is associated with increased flows of nitrogen (N) and phosphorus (P) in the food production–consumption system. However, quantitative analyses of these flows during urban expansion and information about their controlling factors are scarce. Here, we report on N and P flows in the food system of Beijing, which experienced a remarkable growth in population number between especially 1978–2008, using a combination of statistical data bases, surveys and the NUFER model (nutrient flow in the food system, environment and resource). The N (or P) cost of food is defined as the amount of ‘new’ N (or P) used in food production for the delivery of 1 kg N (or P) in the food entering household. ‘New’ N (P) includes fertilizer N (P), biological N fixation, atmospheric N deposition, and imports of N (P) via feed and food. Recycled N (P) includes N (P) in crop residues, manures and wastes. We found that the rapid increase in temporary migrants greatly increased food imports to Beijing metropolitan areas and thereby led to an apparent decrease of the N and P cost of food. The input of ‘new’ N to the food system of Beijing metropolitan areas increased from 180 to 281 Gg, and for P from 33.5 to 50.4 Gg during 1978–2008, as a result of increases in population and changes in food consumption patterns per capita. The food and feed imports in per cent of total ‘new’ N and P inputs increased from 31 to 63% for N and from 18 to 46% for P during 1978–2008. The N and P cost of the food was relatively low compared to the mean of China, and decreased over time. About 52% of the new N input and 85% of the new P input was not recycled in 2008, it accumulated as wastes (in crop residues, animal excreta, and human excreta and household wastes). The N and P use efficiencies in crop and animal production were low, i.e., only 17% for N and 11% for P in 2008. Total losses of ammonia (NH3) and nitrous oxide (N2O) to air and of N to groundwater and surface waters increased by a factor of about 3, and losses of P to groundwater and surface waters increased by a factor of 37 in the period 1978–2008. Key measures for decreasing N and P accumulation and losses are (1) developing satellite towns, (2) expelling animal production to rural areas, and (3) effective collection of the wastes and animal manure, and the utilization of these in rural areas outside Beijing. These findings may also portend changes in other metropolitan areas in China and elsewhere in the rapidly developing world.
Original languageEnglish
Pages (from-to)192-204
JournalGlobal environmental change : human and policy dimensions
Volume28
DOIs
Publication statusPublished - 2014

Keywords

  • environmental implications
  • nutrient flows
  • china
  • cities
  • consumption
  • chain
  • urbanization
  • metabolism
  • ecology
  • balance

Fingerprint Dive into the research topics of 'Impacts of urban expansion on nitrogen and phosphorus flows in the food system of Beijing from 1978 to 2008'. Together they form a unique fingerprint.

Cite this