Impacts of afternoon and evening sea-breeze fronts on local turbulence, and on CO2 and radon-222 transport

J.A. Arrillaga*, J. Vilà-Guerau De Arellano, F. Bosveld, H. Klein Baltink, C. Yagüe, Mariano Sastre, C. Román-Cascón

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

15 Citations (Scopus)


We investigated sharp disruptions of local turbulence and scalar transport due to the arrival of sea‐breeze fronts (SBFs). To this end, we employed a comprehensive 10‐year observational database from the Cabauw Experimental Site for Atmospheric Research (CESAR, the Netherlands). Sea‐breeze (SB) days were selected using a five‐filter algorithm, which accounts for large‐scale conditions and a clear mesoscale‐frontal signal associated with the land–sea contrast. Among those days (102 in all, 8.3%), based on the value of the sensible‐heat flux at the onset of SB, we identified three atmospheric boundary‐layer (ABL) regimes: convective, transition and stable. In the convective regime, the thermally driven convective boundary layer is only slightly altered by a small enhancement of the shear when the SBF arrives. Regarding the transition regime, we found that the ABL afternoon transition is accelerated. This was quantified by estimating the contributions of shear and buoyancy to the turbulent kinetic energy. Other relevant disruptions are the sharp reduction in ABL depth (∼250 m/hr) and the sudden increase in average wind speed (> 2 m/s). In the stable regime, the arrival of the SB leads to disturbances in the wind profile at the surface layer. We observed a deviation of more than 1 m/s in the observed surface‐layer wind profile compared with the profile calculated using Monin–Obukhov Similarity Theory (MOST). Our findings furthermore reveal the determinant role of the SB direction in the transport of water vapour, CO2 and 222Rn. The return of continental air masses driven by the SB circulation generates sharp CO2 increases (up to 14 ppm in half an hour) in a few SB events. We suggest that the variability in 222Rn evolution may also be influenced by other non‐local processes such as the large‐scale footprint from more remote sources.
Original languageEnglish
Pages (from-to)990-1011
JournalQuarterly Journal of the Royal Meteorological Society
Issue number713
Early online date10 Feb 2018
Publication statusPublished - Apr 2018


  • afternoon–evening turbulent transition
  • boundary-layer dynamics
  • coastal meteorology
  • mesoscale
  • scalar transport


Dive into the research topics of 'Impacts of afternoon and evening sea-breeze fronts on local turbulence, and on CO2 and radon-222 transport'. Together they form a unique fingerprint.

Cite this