TY - JOUR
T1 - Impact of long-term sub-soiling tillage on soil porosity and soil physical properties in the soil profile
AU - Yang, Yonghui
AU - Wu, Jicheng
AU - Zhao, Shiwei
AU - Mao, Yongping
AU - Zhang, Jiemei
AU - Pan, Xiaoying
AU - He, Fang
AU - van der Ploeg, Martine
PY - 2021
Y1 - 2021
N2 - Long-term conventional tillage leads to soil compaction and formation of a plough layer, which affects soil physical properties, transport of water, and growth of crop roots toward deeper soil, resulting in soil degradation and a decline in crop productivity. Long-term sub-soiling tillage has proven to be an effective measure for remediating the plough layer and improving the structure and physical properties of the soil. In this study, we experimentally investigated the effects of long-term sub-soiling tillage in an arid region of Henan Province, China, along a deep soil (0–100 cm) profile over 8 years of sub-soiling tillage at a depth of 30 cm and compared the results against conventional tillage at a depth of 15 cm. We measured soil pore distributions of macropores (> 1 mm in diameter), mesopores (0.16–1.0 mm), and total pores (> 0.16 mm) measured by X-ray computed tomography (CT), soil total porosity (ϕ) and > 0.16 mm equivalent porosity measured by conventional methods, soil bulk density (ρs), soil organic carbon content (SOC), the proportion of macroaggregates (> 0.25 mm) (PMA), soil field moisture capacity (fc), available moisture content, and saturated hydraulic conductivity (Ksat). The results indicate that long-term sub-soiling tillage increased soil pore numbers at 0–35 cm depth (macropores, mesopores, and total pores), improved pore shape, and significantly increased porosity at 0–20 cm depth (macropores, mesopores, and total pores; p < 0.05) compared to conventional tillage. In addition, ϕ and > 0.16 mm equivalent porosity were increased by 10.4 and 87.1% at depths of 0–60 cm under sub-soiling tillage, respectively. SOC (0–55 cm depth), fc (0–45 cm depth), available moisture content (0–40 cm depth), Ksat (0–40 cm depth), and PMA (0–50 cm depth) were increased by 16.7, 14.3, 23.8, 471.5, and 98.3%, respectively, and ρs (0–60 cm depth) was reduced by 8.6%. Observed correlations between SOC, soil pore parameters, and soil physical properties suggest that soil pore parameters and soil physical properties can be improved by increasing SOC. These correlations are stronger under sub-soiling than that under conventional tillage. Therefore, sub-soiling is an effective technique for improving soil pore characteristics and physical properties while preventing soil degradation.
AB - Long-term conventional tillage leads to soil compaction and formation of a plough layer, which affects soil physical properties, transport of water, and growth of crop roots toward deeper soil, resulting in soil degradation and a decline in crop productivity. Long-term sub-soiling tillage has proven to be an effective measure for remediating the plough layer and improving the structure and physical properties of the soil. In this study, we experimentally investigated the effects of long-term sub-soiling tillage in an arid region of Henan Province, China, along a deep soil (0–100 cm) profile over 8 years of sub-soiling tillage at a depth of 30 cm and compared the results against conventional tillage at a depth of 15 cm. We measured soil pore distributions of macropores (> 1 mm in diameter), mesopores (0.16–1.0 mm), and total pores (> 0.16 mm) measured by X-ray computed tomography (CT), soil total porosity (ϕ) and > 0.16 mm equivalent porosity measured by conventional methods, soil bulk density (ρs), soil organic carbon content (SOC), the proportion of macroaggregates (> 0.25 mm) (PMA), soil field moisture capacity (fc), available moisture content, and saturated hydraulic conductivity (Ksat). The results indicate that long-term sub-soiling tillage increased soil pore numbers at 0–35 cm depth (macropores, mesopores, and total pores), improved pore shape, and significantly increased porosity at 0–20 cm depth (macropores, mesopores, and total pores; p < 0.05) compared to conventional tillage. In addition, ϕ and > 0.16 mm equivalent porosity were increased by 10.4 and 87.1% at depths of 0–60 cm under sub-soiling tillage, respectively. SOC (0–55 cm depth), fc (0–45 cm depth), available moisture content (0–40 cm depth), Ksat (0–40 cm depth), and PMA (0–50 cm depth) were increased by 16.7, 14.3, 23.8, 471.5, and 98.3%, respectively, and ρs (0–60 cm depth) was reduced by 8.6%. Observed correlations between SOC, soil pore parameters, and soil physical properties suggest that soil pore parameters and soil physical properties can be improved by increasing SOC. These correlations are stronger under sub-soiling than that under conventional tillage. Therefore, sub-soiling is an effective technique for improving soil pore characteristics and physical properties while preventing soil degradation.
KW - soil organic carbon
KW - soil physical properties
KW - soil pores
KW - sub-soiling
KW - X-ray CT scan
U2 - 10.1002/ldr.3874
DO - 10.1002/ldr.3874
M3 - Article
AN - SCOPUS:85105777197
SN - 1085-3278
VL - 32
SP - 2892
EP - 2905
JO - Land Degradation and Development
JF - Land Degradation and Development
IS - 10
ER -