TY - JOUR
T1 - Immunoaffinity Plastic Blade Spray Mass Spectrometry for Rapid Confirmatory Analysis of Food Contaminants
AU - Geballa-Koukoula, Ariadni
AU - Gerssen, Arjen
AU - Blokland, Marco H.
AU - Nielen, Michel W.F.
PY - 2022/11/2
Y1 - 2022/11/2
N2 - The lack of chromatographic separation in ambient and direct mass spectrometry (MS) ionization techniques jeopardizes the overall selectivity of the developed methods. Incorporating a biosensing element at the ionization source could compensate for that inherent lack of selectivity. Thus, a simplified immunoaffinity-direct MS technique was developed, immunoaffinity blade spray (iBS), featuring a conductive polystyrene blade material. In iBS, the generic coating used in conventional coated blade spray is replaced with a layer of highly specific monoclonal antibodies (mAbs), while the stainless steel is replaced with conductive polystyrene to allow for simple ELISA platelike hydrophobic immobilization of mAbs. Because of its high relevance for climate change-induced food safety issues, the mycotoxin deoxynivalenol (DON) was chosen as a model substance. Following a rapid extraction from wheat flour, DON is immuno-captured, and the blade is positioned in front of the MS for direct iBS-MS/MS analysis. The method's applicability was demonstrated by analyzing spiked and incurred wheat flour samples, omitting the need for time-consuming chromatographic separation. Apart from DON, cross-reacting DON conjugates could be successfully analyzed as well. The direct iBS-MS/MS method is generic and adaptable to detecting any analyte in sample extracts, provided that specific mAbs are available.
AB - The lack of chromatographic separation in ambient and direct mass spectrometry (MS) ionization techniques jeopardizes the overall selectivity of the developed methods. Incorporating a biosensing element at the ionization source could compensate for that inherent lack of selectivity. Thus, a simplified immunoaffinity-direct MS technique was developed, immunoaffinity blade spray (iBS), featuring a conductive polystyrene blade material. In iBS, the generic coating used in conventional coated blade spray is replaced with a layer of highly specific monoclonal antibodies (mAbs), while the stainless steel is replaced with conductive polystyrene to allow for simple ELISA platelike hydrophobic immobilization of mAbs. Because of its high relevance for climate change-induced food safety issues, the mycotoxin deoxynivalenol (DON) was chosen as a model substance. Following a rapid extraction from wheat flour, DON is immuno-captured, and the blade is positioned in front of the MS for direct iBS-MS/MS analysis. The method's applicability was demonstrated by analyzing spiked and incurred wheat flour samples, omitting the need for time-consuming chromatographic separation. Apart from DON, cross-reacting DON conjugates could be successfully analyzed as well. The direct iBS-MS/MS method is generic and adaptable to detecting any analyte in sample extracts, provided that specific mAbs are available.
U2 - 10.1021/jasms.2c00149
DO - 10.1021/jasms.2c00149
M3 - Article
C2 - 36223493
AN - SCOPUS:85141286698
SN - 1044-0305
VL - 33
SP - 2038
EP - 2045
JO - Journal of the American Society for Mass Spectrometry
JF - Journal of the American Society for Mass Spectrometry
IS - 11
ER -