Abstract
In contrast to mammals and vascular plants, microalgae show a high diversity in the N-glycan structures of complex N-glycoproteins. Although homologues for β1,2-N-acetylglucosaminyltransferase I (GnTI), a key enzyme in the formation of complex N-glycans, have been identified in several algal species, GnTI-dependent N-glycans have not been detected so far. We have performed an N-glycoproteomic analysis of the hydrocarbon oils accumulating green microalgae Botryococcus braunii. Thereby, the analysis of intact N-glycopeptides allowed the determination of N-glycan compositions. Furthermore, insights into the role of N-glycosylation in B. braunii were gained from functional annotation of the identified N-glycoproteins. In total, 517 unique N-glycosylated peptides have been identified, including intact N-glycopeptides that harbored N-acetylhexosamine (HexNAc) at the nonreducing end. Surprisingly, these GnTI-dependent N-glycans were also found to be modified with (di)methylated hexose. The identification of GnTI-dependent N-glycans in combination with N-glycan methylation in B. braunii revealed an uncommon type of N-glycan processing in this microalgae.
Original language | English |
---|---|
Pages (from-to) | 1361-1369 |
Journal | New Phytologist |
Volume | 215 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2017 |
Keywords
- Botryococcus braunii
- gene ontology annotation
- mass spectrometry
- N-glycosylation
- post-translational modification