Hormonal effects of prohormones : novel approaches towards effect based screening in veterinary growth promoter control

J.C.W. Rijk

Research output: Thesisinternal PhD, WUAcademic

Abstract

Within the European Union the use of growth promoting agents in cattle fattening is prohibited according to Council Directive 96/22/EC. Interestingly, there is not a black list of substances, but 96/22/EC states that all substances having thyrostatic, estrogenic, androgenic or gestagenic activity are prohibited. Besides abuse of the “classical” synthetic steroids there is a tendency towards misuse of natural steroids and prohormones. Prohormones are compounds that exhibit limited or no hormonal activity but are direct precursors of bioactive hormones and are intended to be converted to full active hormones via enzymatic processes in the body. However, knowledge about metabolism, the mode of action and excretion profiles in cattle is often unclear, and methods to detect abuse of prohormones in livestock production are lacking. Therefore, the aim of this thesis was to get insight into the hormonal action of prohormones and to develop novel in vitro and in vivo screening methods allowing effective surveillance on the illegal use of prohormones in livestock production. Hereby the emphasis was on developing effect based approaches to better meet Council Directive 96/22/EC.
The bioactivity of a wide variety of supplements which contained prohormones were tested using a yeast androgen bioassay. For supplements containing solely prohormones the value of this bioactivity based screening appeared to be limited as they require metabolism to become active. Therefore, screening methods for animal feed, supplements and preparations were set-up by using the same yeast androgen bioassay in combination with bovine liver models as well as enzymatic and chemical deconjugation procedures to mimic in vivo metabolic bioactivation. The use of either bovine liver S9, liver slices, pure enzymes or alkaline hydrolysis showed that prohormones could be activated, resulting in a significant increase in bioactivity as determined by the androgen yeast bioassay.
For the detection of prohormone abuse at the farm and/or slaughterhouse the usefulness of ‘omics’ based profiling techniques was investigated. Within this scope a comprehensive metabolomics based screening strategy for steroid urine profiling was developed. Comparison of urinary profiles revealed large differences between the profiles of controls and dehydroepiandrosterone (DHEA) as well as pregnenolone treated animals. Moreover this steroid urine profiling approach allowed identification of biomarkers for treatment by specific prohormones. This resulted in respectively 7 and 12 specific mass peak loadings which could potentially be used as biomarkers for pregnenolone and DHEA treatment.
In addition, the feasibility of a liver gene expression profiling approach was investigated to monitor the effects of DHEA treatment at the transciptome level. It was shown that identification and application of genomic biomarkers for screening of DHEA abuse in cattle is substantially hampered by biological variation. On the other hand, it was demonstrated that comparison of pre-defined gene sets versus the whole genome expression profile of an animal allows to distinguish DHEA treatment effects from variations in gene expression due to inherent biological variation.
Altogether the results of this thesis increase the knowledge about the metabolism and bioactivation of prohormones in vitro as well as in vivo. Based on this knowledge, a panel of new effect based concepts and screening methods was developed that complement and improve the current testing programs. These new concepts will facilitate better implementation of the European ban on growth promoters in livestock production as described in Council Directive 96/22/EC.


LanguageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Wageningen University
Supervisors/Advisors
  • Nielen, Michel, Promotor
  • Rietjens, Ivonne, Promotor
  • Groot, Maria, Co-promotor
  • Peijnenburg, Ad, Co-promotor
Award date3 Dec 2010
Place of Publication[S.l.
Publisher
Print ISBNs9789085858195
Publication statusPublished - 2010

Fingerprint

prasterone
screening
steroids
livestock production
androgens
cattle
pregnenolone
biomarkers
liver
bioassays
yeasts
metabolism
urine
hormones
gene expression
methodology
feed supplements
monitoring
metabolomics
European Union

Keywords

  • growth promoters
  • hormones
  • bioassays
  • metabolism
  • metabolomics

Cite this

@phdthesis{44d76c6d78594abd8d156ff3b4f24f4e,
title = "Hormonal effects of prohormones : novel approaches towards effect based screening in veterinary growth promoter control",
abstract = "Within the European Union the use of growth promoting agents in cattle fattening is prohibited according to Council Directive 96/22/EC. Interestingly, there is not a black list of substances, but 96/22/EC states that all substances having thyrostatic, estrogenic, androgenic or gestagenic activity are prohibited. Besides abuse of the “classical” synthetic steroids there is a tendency towards misuse of natural steroids and prohormones. Prohormones are compounds that exhibit limited or no hormonal activity but are direct precursors of bioactive hormones and are intended to be converted to full active hormones via enzymatic processes in the body. However, knowledge about metabolism, the mode of action and excretion profiles in cattle is often unclear, and methods to detect abuse of prohormones in livestock production are lacking. Therefore, the aim of this thesis was to get insight into the hormonal action of prohormones and to develop novel in vitro and in vivo screening methods allowing effective surveillance on the illegal use of prohormones in livestock production. Hereby the emphasis was on developing effect based approaches to better meet Council Directive 96/22/EC. The bioactivity of a wide variety of supplements which contained prohormones were tested using a yeast androgen bioassay. For supplements containing solely prohormones the value of this bioactivity based screening appeared to be limited as they require metabolism to become active. Therefore, screening methods for animal feed, supplements and preparations were set-up by using the same yeast androgen bioassay in combination with bovine liver models as well as enzymatic and chemical deconjugation procedures to mimic in vivo metabolic bioactivation. The use of either bovine liver S9, liver slices, pure enzymes or alkaline hydrolysis showed that prohormones could be activated, resulting in a significant increase in bioactivity as determined by the androgen yeast bioassay. For the detection of prohormone abuse at the farm and/or slaughterhouse the usefulness of ‘omics’ based profiling techniques was investigated. Within this scope a comprehensive metabolomics based screening strategy for steroid urine profiling was developed. Comparison of urinary profiles revealed large differences between the profiles of controls and dehydroepiandrosterone (DHEA) as well as pregnenolone treated animals. Moreover this steroid urine profiling approach allowed identification of biomarkers for treatment by specific prohormones. This resulted in respectively 7 and 12 specific mass peak loadings which could potentially be used as biomarkers for pregnenolone and DHEA treatment. In addition, the feasibility of a liver gene expression profiling approach was investigated to monitor the effects of DHEA treatment at the transciptome level. It was shown that identification and application of genomic biomarkers for screening of DHEA abuse in cattle is substantially hampered by biological variation. On the other hand, it was demonstrated that comparison of pre-defined gene sets versus the whole genome expression profile of an animal allows to distinguish DHEA treatment effects from variations in gene expression due to inherent biological variation. Altogether the results of this thesis increase the knowledge about the metabolism and bioactivation of prohormones in vitro as well as in vivo. Based on this knowledge, a panel of new effect based concepts and screening methods was developed that complement and improve the current testing programs. These new concepts will facilitate better implementation of the European ban on growth promoters in livestock production as described in Council Directive 96/22/EC.",
keywords = "groeibevorderaars, hormonen, biotesten, metabolisme, metabolomica, growth promoters, hormones, bioassays, metabolism, metabolomics",
author = "J.C.W. Rijk",
note = "WU thesis 4946",
year = "2010",
language = "English",
isbn = "9789085858195",
publisher = "S.n.",
school = "Wageningen University",

}

Hormonal effects of prohormones : novel approaches towards effect based screening in veterinary growth promoter control. / Rijk, J.C.W.

[S.l. : S.n., 2010. 207 p.

Research output: Thesisinternal PhD, WUAcademic

TY - THES

T1 - Hormonal effects of prohormones : novel approaches towards effect based screening in veterinary growth promoter control

AU - Rijk, J.C.W.

N1 - WU thesis 4946

PY - 2010

Y1 - 2010

N2 - Within the European Union the use of growth promoting agents in cattle fattening is prohibited according to Council Directive 96/22/EC. Interestingly, there is not a black list of substances, but 96/22/EC states that all substances having thyrostatic, estrogenic, androgenic or gestagenic activity are prohibited. Besides abuse of the “classical” synthetic steroids there is a tendency towards misuse of natural steroids and prohormones. Prohormones are compounds that exhibit limited or no hormonal activity but are direct precursors of bioactive hormones and are intended to be converted to full active hormones via enzymatic processes in the body. However, knowledge about metabolism, the mode of action and excretion profiles in cattle is often unclear, and methods to detect abuse of prohormones in livestock production are lacking. Therefore, the aim of this thesis was to get insight into the hormonal action of prohormones and to develop novel in vitro and in vivo screening methods allowing effective surveillance on the illegal use of prohormones in livestock production. Hereby the emphasis was on developing effect based approaches to better meet Council Directive 96/22/EC. The bioactivity of a wide variety of supplements which contained prohormones were tested using a yeast androgen bioassay. For supplements containing solely prohormones the value of this bioactivity based screening appeared to be limited as they require metabolism to become active. Therefore, screening methods for animal feed, supplements and preparations were set-up by using the same yeast androgen bioassay in combination with bovine liver models as well as enzymatic and chemical deconjugation procedures to mimic in vivo metabolic bioactivation. The use of either bovine liver S9, liver slices, pure enzymes or alkaline hydrolysis showed that prohormones could be activated, resulting in a significant increase in bioactivity as determined by the androgen yeast bioassay. For the detection of prohormone abuse at the farm and/or slaughterhouse the usefulness of ‘omics’ based profiling techniques was investigated. Within this scope a comprehensive metabolomics based screening strategy for steroid urine profiling was developed. Comparison of urinary profiles revealed large differences between the profiles of controls and dehydroepiandrosterone (DHEA) as well as pregnenolone treated animals. Moreover this steroid urine profiling approach allowed identification of biomarkers for treatment by specific prohormones. This resulted in respectively 7 and 12 specific mass peak loadings which could potentially be used as biomarkers for pregnenolone and DHEA treatment. In addition, the feasibility of a liver gene expression profiling approach was investigated to monitor the effects of DHEA treatment at the transciptome level. It was shown that identification and application of genomic biomarkers for screening of DHEA abuse in cattle is substantially hampered by biological variation. On the other hand, it was demonstrated that comparison of pre-defined gene sets versus the whole genome expression profile of an animal allows to distinguish DHEA treatment effects from variations in gene expression due to inherent biological variation. Altogether the results of this thesis increase the knowledge about the metabolism and bioactivation of prohormones in vitro as well as in vivo. Based on this knowledge, a panel of new effect based concepts and screening methods was developed that complement and improve the current testing programs. These new concepts will facilitate better implementation of the European ban on growth promoters in livestock production as described in Council Directive 96/22/EC.

AB - Within the European Union the use of growth promoting agents in cattle fattening is prohibited according to Council Directive 96/22/EC. Interestingly, there is not a black list of substances, but 96/22/EC states that all substances having thyrostatic, estrogenic, androgenic or gestagenic activity are prohibited. Besides abuse of the “classical” synthetic steroids there is a tendency towards misuse of natural steroids and prohormones. Prohormones are compounds that exhibit limited or no hormonal activity but are direct precursors of bioactive hormones and are intended to be converted to full active hormones via enzymatic processes in the body. However, knowledge about metabolism, the mode of action and excretion profiles in cattle is often unclear, and methods to detect abuse of prohormones in livestock production are lacking. Therefore, the aim of this thesis was to get insight into the hormonal action of prohormones and to develop novel in vitro and in vivo screening methods allowing effective surveillance on the illegal use of prohormones in livestock production. Hereby the emphasis was on developing effect based approaches to better meet Council Directive 96/22/EC. The bioactivity of a wide variety of supplements which contained prohormones were tested using a yeast androgen bioassay. For supplements containing solely prohormones the value of this bioactivity based screening appeared to be limited as they require metabolism to become active. Therefore, screening methods for animal feed, supplements and preparations were set-up by using the same yeast androgen bioassay in combination with bovine liver models as well as enzymatic and chemical deconjugation procedures to mimic in vivo metabolic bioactivation. The use of either bovine liver S9, liver slices, pure enzymes or alkaline hydrolysis showed that prohormones could be activated, resulting in a significant increase in bioactivity as determined by the androgen yeast bioassay. For the detection of prohormone abuse at the farm and/or slaughterhouse the usefulness of ‘omics’ based profiling techniques was investigated. Within this scope a comprehensive metabolomics based screening strategy for steroid urine profiling was developed. Comparison of urinary profiles revealed large differences between the profiles of controls and dehydroepiandrosterone (DHEA) as well as pregnenolone treated animals. Moreover this steroid urine profiling approach allowed identification of biomarkers for treatment by specific prohormones. This resulted in respectively 7 and 12 specific mass peak loadings which could potentially be used as biomarkers for pregnenolone and DHEA treatment. In addition, the feasibility of a liver gene expression profiling approach was investigated to monitor the effects of DHEA treatment at the transciptome level. It was shown that identification and application of genomic biomarkers for screening of DHEA abuse in cattle is substantially hampered by biological variation. On the other hand, it was demonstrated that comparison of pre-defined gene sets versus the whole genome expression profile of an animal allows to distinguish DHEA treatment effects from variations in gene expression due to inherent biological variation. Altogether the results of this thesis increase the knowledge about the metabolism and bioactivation of prohormones in vitro as well as in vivo. Based on this knowledge, a panel of new effect based concepts and screening methods was developed that complement and improve the current testing programs. These new concepts will facilitate better implementation of the European ban on growth promoters in livestock production as described in Council Directive 96/22/EC.

KW - groeibevorderaars

KW - hormonen

KW - biotesten

KW - metabolisme

KW - metabolomica

KW - growth promoters

KW - hormones

KW - bioassays

KW - metabolism

KW - metabolomics

M3 - internal PhD, WU

SN - 9789085858195

PB - S.n.

CY - [S.l.

ER -