High-resolution mapping of soil pollution by Cu and Ni at a polar industrial barren area using proximal and remote sensing

Yury Dvornikov*, Marina Slukovskaya, Alexey Yaroslavtsev, Joulia Meshalkina, Alexey Ryazanov, Dmitrii Sarzhanov, Vyacheslav Vasenev

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

9 Citations (Scopus)

Abstract

Industrial pollution by potentially toxic elements (PTE) remains a key environmental threat, resulting in soil and ecosystem degradation. Remediation of the industrial barrens is challenging in polar regions, where plant growth is hampered by severe climatic conditions. High-resolution mapping of soil pollution is needed to support soil remediation and management projects. The distribution of nickel (Ni) and copper (Cu) was analyzed in the topsoil within the industrial barren around the Ni and Cu smelter in Kola Peninsula, Russia using a field-portable XRF analyzer. Bulk Cu and Ni contents were measured at 84 observation points within the area of two hectares planned for remediation. The PTE content varied between 0.2 and 9.0 g kg−1 for Cu and between 0.2 and 21 g kg−1 for Ni. The area was surveyed with unmanned aerial vehicles and differential global navigation satellite systems to obtain a high-accuracy digital terrain model for exploring the factors behind the spatial variability. Field observations were interpolated by regression kriging with different input resolution of auxiliary data (0.5–1.0–1.5–2.0 m) and different regression models (gradient boosting machines and multiple linear regression). Model performance and validation showed that 1.0–1.5 m resolution of auxiliary data were the best for projecting Cu and Ni topsoil contents within the study site. The soil type and topographic wetness index were the most important variables explaining Cu and Ni content variability.

Original languageEnglish
Pages (from-to)1731-1744
JournalLand Degradation and Development
Volume33
Issue number10
Early online date14 Mar 2022
DOIs
Publication statusPublished - Jun 2022

Keywords

  • gradient boosting machines
  • industrial barren area
  • polar regions
  • potentially toxic metals
  • technogenic soils
  • unmanned aerial vehicle

Fingerprint

Dive into the research topics of 'High-resolution mapping of soil pollution by Cu and Ni at a polar industrial barren area using proximal and remote sensing'. Together they form a unique fingerprint.

Cite this