TY - JOUR
T1 - High Rates of Quinone-Alkyne Cycloaddition Reactions are Dictated by Entropic Factors
AU - Damen, Johannes A.M.
AU - Escorihuela, Jorge
AU - Zuilhof, Han
AU - van Delft, Floris L.
AU - Albada, Bauke
N1 - Publisher Copyright:
© 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
PY - 2023/7/11
Y1 - 2023/7/11
N2 - Reaction rates of strained cycloalkynes and cycloalkenes with 1,2-quinone were quantified by stopped flow UV-Vis spectroscopy and computational analysis. We found that the strained alkyne BCN−OH 3 (k2 1824 M−1 s−1) reacts >150 times faster than the strained alkene TCO-OH 5 (k2 11.56 M−1 s−1), and that derivatization with a carbamate can lead to a reduction of the rate constant with almost half. Also, the 8-membered strained alkyne BCN−OH 3 reacts 16 times faster than the more strained 7-membered THS 2 (k2 110.6 M−1 s−1). Using the linearized Eyring equation we determined the thermodynamic activation parameters of these two strained alkynes, revealing that the SPOCQ reaction of quinone 1 with THS 2 is associated with ΔH≠ of 0.80 kcal/mol, ΔS≠=−46.8 cal/K⋅mol, and ΔG≠=14.8 kcal/mol (at 25 °C), whereas the same reaction with BCN−OH 3 is associated with, ΔH≠=2.25 kcal/mol, ΔS≠=−36.3 cal/K⋅mol, and ΔG≠=13.1 kcal/mol (at 25 °C). Computational analysis supported the values obtained by the stopped-flow measurements, with calculated ΔG≠ of 15.6 kcal/mol (in H2O) for the SPOCQ reaction with THS 2, and with ΔG≠ of 14.7 kcal/mol (in H2O) for the SPOCQ reaction with BCN−OH 3. With these empirically determined thermodynamic parameters, we set an important step towards a more fundamental understanding of this set of rapid click reactions.
AB - Reaction rates of strained cycloalkynes and cycloalkenes with 1,2-quinone were quantified by stopped flow UV-Vis spectroscopy and computational analysis. We found that the strained alkyne BCN−OH 3 (k2 1824 M−1 s−1) reacts >150 times faster than the strained alkene TCO-OH 5 (k2 11.56 M−1 s−1), and that derivatization with a carbamate can lead to a reduction of the rate constant with almost half. Also, the 8-membered strained alkyne BCN−OH 3 reacts 16 times faster than the more strained 7-membered THS 2 (k2 110.6 M−1 s−1). Using the linearized Eyring equation we determined the thermodynamic activation parameters of these two strained alkynes, revealing that the SPOCQ reaction of quinone 1 with THS 2 is associated with ΔH≠ of 0.80 kcal/mol, ΔS≠=−46.8 cal/K⋅mol, and ΔG≠=14.8 kcal/mol (at 25 °C), whereas the same reaction with BCN−OH 3 is associated with, ΔH≠=2.25 kcal/mol, ΔS≠=−36.3 cal/K⋅mol, and ΔG≠=13.1 kcal/mol (at 25 °C). Computational analysis supported the values obtained by the stopped-flow measurements, with calculated ΔG≠ of 15.6 kcal/mol (in H2O) for the SPOCQ reaction with THS 2, and with ΔG≠ of 14.7 kcal/mol (in H2O) for the SPOCQ reaction with BCN−OH 3. With these empirically determined thermodynamic parameters, we set an important step towards a more fundamental understanding of this set of rapid click reactions.
KW - eyring plot
KW - secondary orbital interactions
KW - SPOCQ
KW - thermodynamic reaction parameters
KW - TMTHSI
U2 - 10.1002/chem.202300231
DO - 10.1002/chem.202300231
M3 - Article
C2 - 36942680
AN - SCOPUS:85160798925
SN - 0947-6539
VL - 29
JO - Chemistry-A European Journal
JF - Chemistry-A European Journal
IS - 39
M1 - e202300231
ER -