High heterogeneity of Escherichia coli sequence types harbouring ESBL/AmpC genes on IncI1 plasmids in the Colombian poultry chain

Luis Ricardo Castellanos, Pilar Donado-Godoy, Maribel León, Viviana Clavijo, Alejandra Arevalo, Johan F. Bernal, Arjen J. Timmerman, Dik J. Mevius, Jaap A. Wagenaar, Joost Hordijk*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

62 Citations (Scopus)


Background: Escherichia coli producing ESBL/AmpC enzymes are unwanted in animal production chains as they may pose a risk to human and animal health. Molecular characterization of plasmids and strains carrying genes that encode these enzymes is essential to understand their local and global spread. Objectives: To investigate the diversity of genes, plasmids and strains in ESBL/AmpC-producing E. coli from the Colombian poultry chain isolated within the Colombian Integrated Program for Antimicrobial Resistance Surveillance (Coipars). Methods: A total of 541 non-clinical E. coli strains from epidemiologically independent samples and randomly isolated between 2008 and 2013 within the Coipars program were tested for antimicrobial susceptibility. Poultry isolates resistant to cefotaxime (MIC ≥ 4 mg/L) were screened for ESBL/AmpC genes including blaCTX-M, blaSHV, blaTEM, blaCMY and blaOXA. Plasmid and strain characterization was performed for a selection of the ESBL/AmpC-producing isolates. Plasmids were purified and transformed into E. coli DH10B cells or transferred by conjugation to E. coli W3110. When applicable, PCR Based Replicon Typing (PBRT), plasmid Multi Locus Sequence Typing (pMLST), plasmid Double Locus Sequence Typing (pDLST) and/or plasmid Replicon Sequence Typing (pRST) was performed on resulting transformants and conjugants. Multi Locus Sequence Typing (MLST) was used for strain characterization. Results: In total, 132 of 541 isolates were resistant to cefotaxime and 122 were found to carry ESBL/AmpC genes. Ninety-two harboured blaCMY-2 (75%), fourteen blaSHV-12 (11%), three blaSHV-5 (2%), five blaCTX-M-2 (4%), one blaCTX-M-15 (1%), one blaCTX-M-8 (1%), four a combination of blaCMY-2 and blaSHV-12 (4%) and two a combination of blaCMY-2 and blaSHV-5 (2%). A selection of 39 ESBL/AmpC-producing isolates was characterized at the plasmid and strain level. ESBL/AmpC genes from 36 isolates were transferable by transformation or conjugation of which 22 were located on IncI1 plasmids. These IncI1 plasmids harboured predominantly blaCMY-2 (16/22), and to a lesser extend blaSHV-12 (5/22) and blaCTX-M-8 (1/22). Other plasmid families associated with ESBL/AmpC-genes were IncK (4/33), IncHI2 (3/33), IncA/C (2/33), IncB/O (1/33) and a non-typeable replicon (1/33). Subtyping of IncI1 and IncHI2 demonstrated IncI1/ST12 was predominantly associated with blaCMY-2 (12/16) and IncHI2/ST7 with blaCTX-M-2 (2/3). Finally, 31 different STs were detected among the 39 selected isolates. Conclusions: Resistance to extended spectrum cephalosporins in E. coli from Colombian poultry is mainly caused by blaCMY-2 and blaSHV-12. The high diversity of strain Sequence Types and the dissemination of homogeneous IncI1/ST12 plasmids suggest that spread of the resistance is mainly mediated by horizontal gene transfer.

Original languageEnglish
Article numbere0170777
JournalPLoS ONE
Issue number1
Publication statusPublished - 2017


Dive into the research topics of 'High heterogeneity of Escherichia coli sequence types harbouring ESBL/AmpC genes on IncI1 plasmids in the Colombian poultry chain'. Together they form a unique fingerprint.

Cite this