Heterogeneity in single-cell outgrowth of Listeria monocytogenes in half Fraser enrichment broth is affected by strain variability and physiological state

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)

Abstract

The behaviour of pathogens at the single-cell level can be highly variable and can thus affect the detection efficacy of enrichment-based detection methods. The outgrowth of single cells of three Listeria monocytogenes strains was monitored after fluorescence-activated single-cell sorting in non-selective brain heart infusion (BHI) broth and selective half Fraser enrichment broth (HFB) to quantify outgrowth heterogeneity and its effect on the detection probability. Single-cell heterogeneity was higher in HFB compared to non-selective BHI and heterogeneity increased further when cells were heat-stressed. The increase in heterogeneity was also strain-dependent because the fast-recovering strain Scott A showed less outgrowth heterogeneity than the slower-recovering strains EGDe and H7962. Modelling of the outgrowth kinetics during the primary enrichment demonstrated that starting at low cell concentrations could fail detection of L. monocytogenes at least partly due to cell heterogeneity. This highlights that it is important to take single-cell heterogeneity into account when optimizing enrichment formulations and procedures when L. monocytogenes contamination levels are low.

Original languageEnglish
Article number110783
JournalFood Research International
Volume150
DOIs
Publication statusPublished - Dec 2021

Keywords

  • Enrichment
  • Fluorescence-activated cell sorting
  • ISO 11290–1:2017
  • Listeria monocytogenes
  • Pathogen detection
  • Single-cell heterogeneity

Fingerprint

Dive into the research topics of 'Heterogeneity in single-cell outgrowth of Listeria monocytogenes in half Fraser enrichment broth is affected by strain variability and physiological state'. Together they form a unique fingerprint.

Cite this