TY - JOUR
T1 - Heads or tails: investigating the effects of amphiphile features on the distortion of chiral nematic liquid crystal droplets
AU - Honaker, Lawrence W.
AU - Schaap, Jorik
AU - Kenbeek, Dennis
AU - Miltenburg, Ernst
AU - Deshpande, Siddharth
PY - 2023
Y1 - 2023
N2 - Liquid crystal-based sensing has fast become a growing field, harnessing the sensitivity of liquid crystals to their surroundings to provide information about the analytes present, including surface-active amphiphiles such as biological lipids. Amphiphiles can impart ordering to a liquid crystal and, in the case of chiral nematic liquid crystals (CLCs), distort the helical texture. The cause and degree to which this distortion occurs is not fully clear. In this work, the effects of different amphiphiles on the final colour textures as well as the pitch of chiral nematic liquid crystals are investigated. We find that the tails of amphiphiles and their orientation play a more important role in determining the final distortions of the liquid crystal by the direct interactions they have with the host, whereas the headgroups do not play a significant role in affecting these distortions. Our findings may find implications in designing CLC-based biosensors, where the tails will likely have more impact on the CLC response, while the headgroups will remain available for further functionalization without having significant effects on the signal readout.
AB - Liquid crystal-based sensing has fast become a growing field, harnessing the sensitivity of liquid crystals to their surroundings to provide information about the analytes present, including surface-active amphiphiles such as biological lipids. Amphiphiles can impart ordering to a liquid crystal and, in the case of chiral nematic liquid crystals (CLCs), distort the helical texture. The cause and degree to which this distortion occurs is not fully clear. In this work, the effects of different amphiphiles on the final colour textures as well as the pitch of chiral nematic liquid crystals are investigated. We find that the tails of amphiphiles and their orientation play a more important role in determining the final distortions of the liquid crystal by the direct interactions they have with the host, whereas the headgroups do not play a significant role in affecting these distortions. Our findings may find implications in designing CLC-based biosensors, where the tails will likely have more impact on the CLC response, while the headgroups will remain available for further functionalization without having significant effects on the signal readout.
U2 - 10.1039/D2TC05390J
DO - 10.1039/D2TC05390J
M3 - Article
SN - 2050-7534
VL - 11
SP - 4867
EP - 4875
JO - Journal of Materials Chemistry C
JF - Journal of Materials Chemistry C
IS - 14
ER -