TY - JOUR
T1 - Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms
AU - Gayen, Amiya
AU - Pourghasemi, Hamid Reza
AU - Saha, Sunil
AU - Keesstra, Saskia
AU - Bai, Shibiao
PY - 2019/6/10
Y1 - 2019/6/10
N2 - Gully erosion is one of the most effective drivers of sediment removal and runoff from highland areas to valley floors and stable channels, where continued off-site effects of water erosion occur. Gully initiation and development is a natural process that greatly impacts natural resources, agricultural activities, and environmental quality as it promotes land and water degradation, ecosystem disruption, and intensification of hazards. In this research, an attempt is made to produce gully erosion susceptibility maps for the management of hazard-prone areas in the Pathro River Basin of India using four well-known machine learning models, namely, multivariate additive regression splines (MARS), flexible discriminant analysis (FDA), random forest (RF), and support vector machine (SVM). To support this effort, observations from 174 gully erosion sites were made using field surveys. Of the 174 observations, 70% were randomly split into a training data set to build susceptibility models and the remaining 30% were used to validate the newly built models. Twelve gully erosion conditioning factors were assessed to find the areas most susceptible to gully erosion. The predisposing factors were slope gradient, altitude, plan curvature, slope aspect, land use, slope length (LS), topographical wetness index (TWI), drainage density, soil type, distance from the river, distance from the lineament, and distance from the road. Finally, the results from the four applied models were validated with the help of ROC (Receiver Operating Characteristics) curves. The AUC value for the RF model was calculated to be 96.2%, whereas for those for the FDA, MARS, and SVM models were 84.2%, 91.4%, and 88.3%, respectively. The AUC results indicated that the random forest model had the highest prediction accuracy, followed by the MARS, SVM, and FDA models. However, it could be concluded that all the machine learning models performed well according to their prediction accuracy. The produced GESMs can be very useful for land managers and policy makers as they can be used to initiate remedial measures and erosion hazard mitigation in prioritized areas.
AB - Gully erosion is one of the most effective drivers of sediment removal and runoff from highland areas to valley floors and stable channels, where continued off-site effects of water erosion occur. Gully initiation and development is a natural process that greatly impacts natural resources, agricultural activities, and environmental quality as it promotes land and water degradation, ecosystem disruption, and intensification of hazards. In this research, an attempt is made to produce gully erosion susceptibility maps for the management of hazard-prone areas in the Pathro River Basin of India using four well-known machine learning models, namely, multivariate additive regression splines (MARS), flexible discriminant analysis (FDA), random forest (RF), and support vector machine (SVM). To support this effort, observations from 174 gully erosion sites were made using field surveys. Of the 174 observations, 70% were randomly split into a training data set to build susceptibility models and the remaining 30% were used to validate the newly built models. Twelve gully erosion conditioning factors were assessed to find the areas most susceptible to gully erosion. The predisposing factors were slope gradient, altitude, plan curvature, slope aspect, land use, slope length (LS), topographical wetness index (TWI), drainage density, soil type, distance from the river, distance from the lineament, and distance from the road. Finally, the results from the four applied models were validated with the help of ROC (Receiver Operating Characteristics) curves. The AUC value for the RF model was calculated to be 96.2%, whereas for those for the FDA, MARS, and SVM models were 84.2%, 91.4%, and 88.3%, respectively. The AUC results indicated that the random forest model had the highest prediction accuracy, followed by the MARS, SVM, and FDA models. However, it could be concluded that all the machine learning models performed well according to their prediction accuracy. The produced GESMs can be very useful for land managers and policy makers as they can be used to initiate remedial measures and erosion hazard mitigation in prioritized areas.
KW - Flexible discriminant analysis
KW - Geospatial modelling
KW - Gully erosion
KW - Multivariate additive regression splines
KW - Random forest
KW - Support vector machine
U2 - 10.1016/j.scitotenv.2019.02.436
DO - 10.1016/j.scitotenv.2019.02.436
M3 - Article
AN - SCOPUS:85062414490
SN - 0048-9697
VL - 668
SP - 124
EP - 138
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -