Projects per year
Abstract
Firstly, the characteristics of current GLC reference datasets that have been used for calibration and validation of GLC maps were reviewed and analysed. Findings revealed varying GLC reference dataset suitability levels depending on the reference data characteristics, user requirements and target maps. Nonetheless, several datasets (LC-CCI, GOFC-GOLD, FAO-FRA and Geo-Wiki) were identified as generally being suitable for re-use for multiple user groups. This highlights the potentiality of GLC reference datasets for multiple uses and public access of existing reference datasets in improving the usability of the datasets outside their intended use.
Secondly, a comparative assessment of thematic accuracies of GLC maps based on an existing reference dataset was conducted. The Globcover-2005 reference dataset was processed to assess and compare Globcover, LC-CCI and MODIS maps for the year 2005. These maps were evaluated from the perspective of several user applications using a weighted accuracy assessment procedure. Overall accuracies of the maps ranged between 61.3 ± 1.5% and 71.4 ± 1.3%. The overall weighted accuracy varied between 80-92% for the considered applications. The latter accuracy is higher because confusions between some classes were deemed inconsequential for the applications considered. To determine fitness of use of GLC maps, accuracy of GLC maps should be assessed per application; there is no single-figure accuracy estimate expressing map fitness for all purposes.
Thirdly, this research assesses the spatial accuracy of Globcover-2009, Land Cover-CCI-2010, MODIS-2010 and Globeland30 in Africa using publicly available GLC reference datasets. Spatial accuracy was modelled by the spatial autocorrelation structures of the local correspondence between map and reference data. Created correspondence maps showed spatial patterns indicating zonal differences in the degree with which different GLC maps matched the reference data. The results showed the potentiality of integrating current GLC maps along with reference data to create an improved GLC map. Different integration methods including geostatistical approaches were tested and assessed by cross-validation. The integration methods based on geostatistical approach resulted in 4.5%–13% higher correspondence with the reference LC than any of the input GLC maps. An improved GLC map was presented based on the based integration method. This GLC map has 10% higher global correspondence with reference LC than the individual input maps.
Figure 1. The integrated GLC map
Lastly, the thematic requirements of different GLC map users was addressed and a concept of producing GLC maps with user-specific legends based on area fraction maps of LC classes is proposed. It is demonstrated by creating GLC maps with user-specific legends from the perspectives of land system modelling and biodiversity assessments. This PhD research demonstrates the importance of accounting for the requirements and perspectives of user applications in validating, comparing and improving GLC maps. The work also includes improving the efficient use of existing GLC reference datasets, comparative accuracy assessment of GLC maps using both the design based and model based approaches as well as presenting an integration method to improve current GLC maps to better meet different application needs.
Original language | English |
---|---|
Qualification | Doctor of Philosophy |
Awarding Institution |
|
Supervisors/Advisors |
|
Award date | 20 May 2016 |
Place of Publication | Wageningen |
Publisher | |
Print ISBNs | 9789462577817 |
DOIs | |
Publication status | Published - 2016 |
Keywords
- land use
- maps
- geoinformation
- ground cover
- earth system science
- remote sensing
Fingerprint
Dive into the research topics of 'Global land cover map validation, comparison and integration for different user communities'. Together they form a unique fingerprint.Projects
- 1 Finished