Abstract
This article highlights the results of an assessment of representation and usability of global temperature station data for global spatio-temporal analysis. Datasets from the Global Surface Summary of Day (GSOD) and the European Climate Assessment & Dataset (ECA&D) were merged and consisted of 10,695 global stations for the year 2011. Three aspects of data quality were considered: (a) representation in the geographical domain, (b) representation in the feature space (based on the MaxEnt method), and (c) usability i.e. fitness of use for spatio-temporal interpolation based on cross-validation of spatio-temporal regression-kriging models. The results indicate significant clustering of meteorological stations in the combined data set in both geographical and feature space. The majority of the distribution of stations (84%) can be explained by population density and accessibility maps. Consequently, higher elevations areas and inaccessible areas that are sparsely populated are significantly under-represented. Under-representation also reflects on the results of spatio-temporal analysis. Spatio-temporal regression-kriging model of mean daily temperature using 8-day MODIS LST images, as covariate, produces average global accuracy of 2-3 °C. Prediction of temperature for polar areas and mountains is 2 times lower than for areas densely covered with meteorological stations. Balanced spatio-temporal regression models that account for station clustering are suggested.
Original language | English |
---|---|
Pages (from-to) | 22-38 |
Journal | Spatial Statistics |
Volume | 14 |
DOIs | |
Publication status | Published - 2015 |
Keywords
- Daily temperature interpolation
- Global space-time kriging model
- GSOD
- MaxEnt
- MODIS LST
- Spatio-temporal analysis