Genomic selection in egg-laying chickens

M. Heidaritabar

Research output: Thesisinternal PhD, WUAcademic

Abstract

Abstract

Heidaritabar, M. (2016). Genomic selection in egg-laying chickens. PhD thesis, Wageningen University, the Netherlands

In recent years, prediction of genetic values with DNA markers, or genomic selection (GS), has become a very intense field of research. Many initial studies on GS have focused on the accuracy of predicting the genetic values with different genomic prediction methods. In this thesis, I assessed several aspects of GS. I started with evaluating results of GS against results of traditional pedigree-based selection (BLUP) in data from a selection experiment that applied both methods side by side. The impact of traditional selection and GS on the overall genome variation as well as the overlap between regions selected by GS and the genomic regions predicted to affect the traits were assessed. The impact of selection on genome variation was assessed by measuring changes in allele frequencies that allowed the identification of regions in the genome where changes must be due to selection. These frequency changes were shown to be larger than what could be expected from random fluctuations, indicating that selection is really affecting the allele frequencies and that this effect is stronger in GS compared with BLUP. Next, concordance was tested between the selected regions and regions that affect the traits, as detected by a genome-wide association study. Results showed a low concordance overall between the associated regions and the selected regions. However, markers in associated regions did show larger changes in allele frequencies compared with the average changes across the genome. The selection experiment was performed using a medium density of DNA markers (60K). I subsequently explored the potential benefits of whole-genome sequence data for GS by comparing prediction accuracy from imputed sequence data with the accuracy obtained from the 60K genotypes. Before sequencing, the selection of key animals that should be sequenced to maximize imputation accuracy was assessed with the original 60K genotypes. The accuracy of genotype imputation from lower density panels using a small number of selected key animals as reference was compared with a scenario where random animals were used as the reference population. Even with a very small number of animals as reference, reasonable imputation accuracy could be obtained. Moreover, selecting key animals as reference considerably improved imputation accuracy of rare alleles compared with a set of random reference animals. While imputation from a small reference set was successful, imputation to whole-genome sequence data hardly improved genomic prediction accuracy compared with the predictions based on 60K genotypes. Using only those markers from the whole-genome sequence that are more likely to affect the phenotype was expected to remove noise from the data, but resulted in slightly lower prediction accuracy compared with the complete genome sequence. Finally, I evaluated the inclusion of dominance effects besides additive effects in GS models. The proportion of variance due to additive and dominance effects were estimated for egg production and egg quality traits of a purebred line of layers. The proportion of dominance variance to the total phenotypic variance ranged from 0 to 0.05 across traits. Also, the impact of fitting dominance besides additive effects on prediction accuracy was investigated, but was not found to improve accuracy of genomic prediction of breeding values.

 

 

 

 

 

 

 

 

 

 

Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Wageningen University
Supervisors/Advisors
  • Groenen, Martien, Promotor
  • Bastiaansen, John, Co-promotor
Award date30 Mar 2016
Place of PublicationWageningen
Publisher
Print ISBNs9789462576704
Publication statusPublished - 2016

Fingerprint

marker-assisted selection
oviposition
chickens
genome
prediction
dominance (genetics)
gene frequency
genomics
animals
genotype
additive effect
genetic markers
egg quality
purebreds
breeding value
phenotypic variation
pedigree
egg production
Netherlands
alleles

Keywords

  • hens
  • genomics
  • genetic variation
  • selective breeding
  • quantitative traits
  • breeding value
  • animal genetics
  • animal breeding

Cite this

Heidaritabar, M. (2016). Genomic selection in egg-laying chickens. Wageningen: Wageningen University.
Heidaritabar, M.. / Genomic selection in egg-laying chickens. Wageningen : Wageningen University, 2016. 220 p.
@phdthesis{ada45822270f4c81b9d7cd71181d8591,
title = "Genomic selection in egg-laying chickens",
abstract = "Abstract Heidaritabar, M. (2016). Genomic selection in egg-laying chickens. PhD thesis, Wageningen University, the Netherlands In recent years, prediction of genetic values with DNA markers, or genomic selection (GS), has become a very intense field of research. Many initial studies on GS have focused on the accuracy of predicting the genetic values with different genomic prediction methods. In this thesis, I assessed several aspects of GS. I started with evaluating results of GS against results of traditional pedigree-based selection (BLUP) in data from a selection experiment that applied both methods side by side. The impact of traditional selection and GS on the overall genome variation as well as the overlap between regions selected by GS and the genomic regions predicted to affect the traits were assessed. The impact of selection on genome variation was assessed by measuring changes in allele frequencies that allowed the identification of regions in the genome where changes must be due to selection. These frequency changes were shown to be larger than what could be expected from random fluctuations, indicating that selection is really affecting the allele frequencies and that this effect is stronger in GS compared with BLUP. Next, concordance was tested between the selected regions and regions that affect the traits, as detected by a genome-wide association study. Results showed a low concordance overall between the associated regions and the selected regions. However, markers in associated regions did show larger changes in allele frequencies compared with the average changes across the genome. The selection experiment was performed using a medium density of DNA markers (60K). I subsequently explored the potential benefits of whole-genome sequence data for GS by comparing prediction accuracy from imputed sequence data with the accuracy obtained from the 60K genotypes. Before sequencing, the selection of key animals that should be sequenced to maximize imputation accuracy was assessed with the original 60K genotypes. The accuracy of genotype imputation from lower density panels using a small number of selected key animals as reference was compared with a scenario where random animals were used as the reference population. Even with a very small number of animals as reference, reasonable imputation accuracy could be obtained. Moreover, selecting key animals as reference considerably improved imputation accuracy of rare alleles compared with a set of random reference animals. While imputation from a small reference set was successful, imputation to whole-genome sequence data hardly improved genomic prediction accuracy compared with the predictions based on 60K genotypes. Using only those markers from the whole-genome sequence that are more likely to affect the phenotype was expected to remove noise from the data, but resulted in slightly lower prediction accuracy compared with the complete genome sequence. Finally, I evaluated the inclusion of dominance effects besides additive effects in GS models. The proportion of variance due to additive and dominance effects were estimated for egg production and egg quality traits of a purebred line of layers. The proportion of dominance variance to the total phenotypic variance ranged from 0 to 0.05 across traits. Also, the impact of fitting dominance besides additive effects on prediction accuracy was investigated, but was not found to improve accuracy of genomic prediction of breeding values.                    ",
keywords = "hens, genomics, genetic variation, selective breeding, quantitative traits, breeding value, animal genetics, animal breeding, hennen, genomica, genetische variatie, selectief fokken, kwantitatieve kenmerken, fokwaarde, diergenetica, dierveredeling",
author = "M. Heidaritabar",
note = "WU thesis 6306",
year = "2016",
language = "English",
isbn = "9789462576704",
publisher = "Wageningen University",
school = "Wageningen University",

}

Heidaritabar, M 2016, 'Genomic selection in egg-laying chickens', Doctor of Philosophy, Wageningen University, Wageningen.

Genomic selection in egg-laying chickens. / Heidaritabar, M.

Wageningen : Wageningen University, 2016. 220 p.

Research output: Thesisinternal PhD, WUAcademic

TY - THES

T1 - Genomic selection in egg-laying chickens

AU - Heidaritabar, M.

N1 - WU thesis 6306

PY - 2016

Y1 - 2016

N2 - Abstract Heidaritabar, M. (2016). Genomic selection in egg-laying chickens. PhD thesis, Wageningen University, the Netherlands In recent years, prediction of genetic values with DNA markers, or genomic selection (GS), has become a very intense field of research. Many initial studies on GS have focused on the accuracy of predicting the genetic values with different genomic prediction methods. In this thesis, I assessed several aspects of GS. I started with evaluating results of GS against results of traditional pedigree-based selection (BLUP) in data from a selection experiment that applied both methods side by side. The impact of traditional selection and GS on the overall genome variation as well as the overlap between regions selected by GS and the genomic regions predicted to affect the traits were assessed. The impact of selection on genome variation was assessed by measuring changes in allele frequencies that allowed the identification of regions in the genome where changes must be due to selection. These frequency changes were shown to be larger than what could be expected from random fluctuations, indicating that selection is really affecting the allele frequencies and that this effect is stronger in GS compared with BLUP. Next, concordance was tested between the selected regions and regions that affect the traits, as detected by a genome-wide association study. Results showed a low concordance overall between the associated regions and the selected regions. However, markers in associated regions did show larger changes in allele frequencies compared with the average changes across the genome. The selection experiment was performed using a medium density of DNA markers (60K). I subsequently explored the potential benefits of whole-genome sequence data for GS by comparing prediction accuracy from imputed sequence data with the accuracy obtained from the 60K genotypes. Before sequencing, the selection of key animals that should be sequenced to maximize imputation accuracy was assessed with the original 60K genotypes. The accuracy of genotype imputation from lower density panels using a small number of selected key animals as reference was compared with a scenario where random animals were used as the reference population. Even with a very small number of animals as reference, reasonable imputation accuracy could be obtained. Moreover, selecting key animals as reference considerably improved imputation accuracy of rare alleles compared with a set of random reference animals. While imputation from a small reference set was successful, imputation to whole-genome sequence data hardly improved genomic prediction accuracy compared with the predictions based on 60K genotypes. Using only those markers from the whole-genome sequence that are more likely to affect the phenotype was expected to remove noise from the data, but resulted in slightly lower prediction accuracy compared with the complete genome sequence. Finally, I evaluated the inclusion of dominance effects besides additive effects in GS models. The proportion of variance due to additive and dominance effects were estimated for egg production and egg quality traits of a purebred line of layers. The proportion of dominance variance to the total phenotypic variance ranged from 0 to 0.05 across traits. Also, the impact of fitting dominance besides additive effects on prediction accuracy was investigated, but was not found to improve accuracy of genomic prediction of breeding values.                    

AB - Abstract Heidaritabar, M. (2016). Genomic selection in egg-laying chickens. PhD thesis, Wageningen University, the Netherlands In recent years, prediction of genetic values with DNA markers, or genomic selection (GS), has become a very intense field of research. Many initial studies on GS have focused on the accuracy of predicting the genetic values with different genomic prediction methods. In this thesis, I assessed several aspects of GS. I started with evaluating results of GS against results of traditional pedigree-based selection (BLUP) in data from a selection experiment that applied both methods side by side. The impact of traditional selection and GS on the overall genome variation as well as the overlap between regions selected by GS and the genomic regions predicted to affect the traits were assessed. The impact of selection on genome variation was assessed by measuring changes in allele frequencies that allowed the identification of regions in the genome where changes must be due to selection. These frequency changes were shown to be larger than what could be expected from random fluctuations, indicating that selection is really affecting the allele frequencies and that this effect is stronger in GS compared with BLUP. Next, concordance was tested between the selected regions and regions that affect the traits, as detected by a genome-wide association study. Results showed a low concordance overall between the associated regions and the selected regions. However, markers in associated regions did show larger changes in allele frequencies compared with the average changes across the genome. The selection experiment was performed using a medium density of DNA markers (60K). I subsequently explored the potential benefits of whole-genome sequence data for GS by comparing prediction accuracy from imputed sequence data with the accuracy obtained from the 60K genotypes. Before sequencing, the selection of key animals that should be sequenced to maximize imputation accuracy was assessed with the original 60K genotypes. The accuracy of genotype imputation from lower density panels using a small number of selected key animals as reference was compared with a scenario where random animals were used as the reference population. Even with a very small number of animals as reference, reasonable imputation accuracy could be obtained. Moreover, selecting key animals as reference considerably improved imputation accuracy of rare alleles compared with a set of random reference animals. While imputation from a small reference set was successful, imputation to whole-genome sequence data hardly improved genomic prediction accuracy compared with the predictions based on 60K genotypes. Using only those markers from the whole-genome sequence that are more likely to affect the phenotype was expected to remove noise from the data, but resulted in slightly lower prediction accuracy compared with the complete genome sequence. Finally, I evaluated the inclusion of dominance effects besides additive effects in GS models. The proportion of variance due to additive and dominance effects were estimated for egg production and egg quality traits of a purebred line of layers. The proportion of dominance variance to the total phenotypic variance ranged from 0 to 0.05 across traits. Also, the impact of fitting dominance besides additive effects on prediction accuracy was investigated, but was not found to improve accuracy of genomic prediction of breeding values.                    

KW - hens

KW - genomics

KW - genetic variation

KW - selective breeding

KW - quantitative traits

KW - breeding value

KW - animal genetics

KW - animal breeding

KW - hennen

KW - genomica

KW - genetische variatie

KW - selectief fokken

KW - kwantitatieve kenmerken

KW - fokwaarde

KW - diergenetica

KW - dierveredeling

M3 - internal PhD, WU

SN - 9789462576704

PB - Wageningen University

CY - Wageningen

ER -

Heidaritabar M. Genomic selection in egg-laying chickens. Wageningen: Wageningen University, 2016. 220 p.