TY - JOUR
T1 - Genome-wide scan for body composition in pigs reveals important role of imprinting
AU - de Koning, D.J.
AU - Rattink, A.P.
AU - Harlizius, B.
AU - van Arendonk, J.A.M.
AU - Brascamp, E.W.
AU - Groenen, M.A.M.
N1 - pormap 2189
PY - 2000
Y1 - 2000
N2 - The role of imprinting in body composition was investigated in an experimental cross between Chinese Meishan pigs and commercial Dutch pigs. A whole-genome scan revealed significant evidence for five quantitative trait loci (QTL) affecting body composition, of which four were imprinted. Imprinting was tested with a statistical model that separated the expression of paternally and maternally inherited alleles. For back fat thickness, a paternally expressed QTL was found on Sus scrofa chromosome 2 (SSC2), and a Mendelian-expressed QTL was found on SSC7. In the same region of SSC7, a maternally expressed QTL affecting muscle depth was found. Chromosome 6 harbored a maternally expressed QTL on the short arm and a paternally expressed QTL on the long arm, both affecting intramuscular fat content. The individual QTL explained from 2 p to 10 f the phenotypic variance. The known homologies to human and mouse did not reveal positional candidate genes. This study demonstrates that testing for imprinting should become a standard procedure to unravel the genetic control of multifactorial traits.
AB - The role of imprinting in body composition was investigated in an experimental cross between Chinese Meishan pigs and commercial Dutch pigs. A whole-genome scan revealed significant evidence for five quantitative trait loci (QTL) affecting body composition, of which four were imprinted. Imprinting was tested with a statistical model that separated the expression of paternally and maternally inherited alleles. For back fat thickness, a paternally expressed QTL was found on Sus scrofa chromosome 2 (SSC2), and a Mendelian-expressed QTL was found on SSC7. In the same region of SSC7, a maternally expressed QTL affecting muscle depth was found. Chromosome 6 harbored a maternally expressed QTL on the short arm and a paternally expressed QTL on the long arm, both affecting intramuscular fat content. The individual QTL explained from 2 p to 10 f the phenotypic variance. The known homologies to human and mouse did not reveal positional candidate genes. This study demonstrates that testing for imprinting should become a standard procedure to unravel the genetic control of multifactorial traits.
U2 - 10.1073/pnas.140216397
DO - 10.1073/pnas.140216397
M3 - Article
VL - 97
SP - 7947
EP - 7950
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 14
ER -