Genome wide gene-expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticae

Astrid Bryon, Nicky Wybouw, Wannes Dermauw, Luc Tirry, Thomas Van Leeuwen*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

50 Citations (Scopus)


Background: Diapause or developmental arrest, is one of the major adaptations that allows mites and insects to survive unfavorable conditions. Diapause evokes a number of physiological, morphological and molecular modifications. In general, diapause is characterized by a suppression of the metabolism, change in behavior, increased stress tolerance and often by the synthesis of cryoprotectants. At the molecular level, diapause is less studied but characterized by a complex and regulated change in gene-expression. The spider mite Tetranychus urticae is a serious polyphagous pest that exhibits a reproductive facultative diapause, which allows it to survive winter conditions. Diapausing mites turn deeply orange in color, stop feeding and do not lay eggs.Results: We investigated essential physiological processes in diapausing mites by studying genome-wide expression changes, using a custom built microarray. Analysis of this dataset showed that a remarkable number, 11% of the total number of predicted T. urticae genes, were differentially expressed. Gene Ontology analysis revealed that many metabolic pathways were affected in diapausing females. Genes related to digestion and detoxification, cryoprotection, carotenoid synthesis and the organization of the cytoskeleton were profoundly influenced by the state of diapause. Furthermore, we identified and analyzed an unique class of putative antifreeze proteins that were highly upregulated in diapausing females. We also further confirmed the involvement of horizontally transferred carotenoid synthesis genes in diapause and different color morphs of T. urticae.Conclusions: This study offers the first in-depth analysis of genome-wide gene-expression patterns related to diapause in a member of the Chelicerata, and further adds to our understanding of the overall strategies of diapause in arthropods.

Original languageEnglish
Article number815
JournalBMC Genomics
Issue number1
Publication statusPublished - 21 Nov 2013
Externally publishedYes


  • Acari
  • GPCR
  • Ice binding
  • Inositol
  • Thermal hysteresis

Fingerprint Dive into the research topics of 'Genome wide gene-expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticae'. Together they form a unique fingerprint.

Cite this