Genetic management of Dutch golden retriever dogs with a simulation tool

Research output: Contribution to journalArticleAcademicpeer-review

12 Citations (Scopus)


Excessive inbreeding rates and small effective population sizes are an important problem in many populations of dogs. Proper genetic management of these populations can decrease the problem, and several measures are available. However, the effectiveness of these measures is not clear beforehand. Therefore, a simulation model was developed to test measures that aim to decrease the rate of inbreeding. The simulation program was used to evaluate inbreeding restriction measures in the Dutch golden retriever dog population. This population consisted of approximately 600 dams and 150 sires that produce 300 litters each year. The five most popular sires sire approximately 25% of the litters in a year. Simulations show that the small number of popular sires and their high contribution to the next generation are the main determinants of the inbreeding rates. Restricting breeding to animals with a low average relatedness to all other animals in the population was the most effective measure and decreased the rate of inbreeding per generation from 0.41 to 0.12%. Minimizing co-ancestry of parents was not effective in the long run, but decreased variation in inbreeding rates. Restricting the number of litters per sire generally decreased the generation interval because sires were replaced more quickly, once they met their restriction. In some instances, this lead to an increase in inbreeding rates because the next generations were more related. The simulation tool proved to be a powerful and educational tool for deciding which breeding restrictions to apply, and can be effective in different breeds and species as well.
Original languageEnglish
Pages (from-to)428-440
JournalJournal of Animal Breeding and Genetics
Issue number6
Publication statusPublished - 2015

Fingerprint Dive into the research topics of 'Genetic management of Dutch golden retriever dogs with a simulation tool'. Together they form a unique fingerprint.

Cite this