TY - JOUR
T1 - Gender related and dexamethasone induced differences in the mRNA levels of the MRF genes in rat anterior tibial skeletal muscle
AU - te Pas, M.F.W.
AU - de Jong, P.R.
AU - Verburg, F.J.
AU - Duin, M.
AU - Henning, R.H.
PY - 1999
Y1 - 1999
N2 - Muscle formation and postnatal growth is under the control of the muscle regulatory factors (MRF) gene family, consisting of four genes: MyoD1, myogenin, myf-5, and myf-6. Muscle mass is also known to be affected by specific drugs, like glucocorticoids. Glucocorticoids have also been characterized as muscle atrophying agents. However, glucocorticoids are also the only drugs reported to have a beneficial effect on the treatment of muscle degenerative disorders. Since muscle mass relates to gender, this may be partially caused by gender. The aim of this study is to investigate gender-related basal and dexamethasone-induced expression of the MRF genes. Gender-specific MRF mRNA levels were investigated in anterior tibial muscles of the rat. Myogenin, myf-5, and myf-6 mRNA level was significantly higher in female rats than in male rats. Since muscle mass is usually higher in males, we conclude that the development of gender-related differences in muscle mass is not primarily under the control of the mRNA levels of the MRF genes. Male rats treated with dexamethasone for 14 days (1 mg per kg body weight) showed increased levels of MyoD1, myogenin and myf-5 compared to control male rats. Female rats treated with dexamethasone showed decreased expression of myf-6 compared to control female rats. These results suggest that dexamethasone increase satellite cell-specific MRF activity in male muscle tissue, which is suggested to be associated with muscle hypertrophy, while maintenance of muscle tissue is affected in female muscle tissue. Therefore, we conclude that both basal and dexamethasone-induced MRF gene mRNA levels are regulated gender-specific.
AB - Muscle formation and postnatal growth is under the control of the muscle regulatory factors (MRF) gene family, consisting of four genes: MyoD1, myogenin, myf-5, and myf-6. Muscle mass is also known to be affected by specific drugs, like glucocorticoids. Glucocorticoids have also been characterized as muscle atrophying agents. However, glucocorticoids are also the only drugs reported to have a beneficial effect on the treatment of muscle degenerative disorders. Since muscle mass relates to gender, this may be partially caused by gender. The aim of this study is to investigate gender-related basal and dexamethasone-induced expression of the MRF genes. Gender-specific MRF mRNA levels were investigated in anterior tibial muscles of the rat. Myogenin, myf-5, and myf-6 mRNA level was significantly higher in female rats than in male rats. Since muscle mass is usually higher in males, we conclude that the development of gender-related differences in muscle mass is not primarily under the control of the mRNA levels of the MRF genes. Male rats treated with dexamethasone for 14 days (1 mg per kg body weight) showed increased levels of MyoD1, myogenin and myf-5 compared to control male rats. Female rats treated with dexamethasone showed decreased expression of myf-6 compared to control female rats. These results suggest that dexamethasone increase satellite cell-specific MRF activity in male muscle tissue, which is suggested to be associated with muscle hypertrophy, while maintenance of muscle tissue is affected in female muscle tissue. Therefore, we conclude that both basal and dexamethasone-induced MRF gene mRNA levels are regulated gender-specific.
KW - Dexamethasone
KW - Gender
KW - MRF genes
KW - MRNA expression
KW - Rat
M3 - Article
SN - 0301-4851
VL - 26
SP - 277
EP - 284
JO - Molecular Biology Reports
JF - Molecular Biology Reports
IS - 4
ER -