Future streamflow regime changes in the United States: Assessment using functional classification

Manuela I. Brunner*, Lieke A. Melsen, Andrew J. Newman, Andrew W. Wood, Martyn P. Clark

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

5 Citations (Scopus)

Abstract

Streamflow regimes are changing and expected to further change under the influence of climate change, with potential impacts on flow variability and the seasonality of extremes. However, not all types of regimes are going to change in the same way. Climate change impact assessments can therefore benefit from identifying classes of catchments with similar streamflow regimes. Traditional catchment classification approaches have focused on specific meteorological and/or streamflow indices, usually neglecting the temporal information stored in the data. The aim of this study is 2-fold: (1) develop a catchment classification scheme that enables incorporation of such temporal information and (2) use the scheme to evaluate changes in future flow regimes. We use the developed classification scheme, which relies on a functional data representation, to cluster a large set of catchments in the conterminous United States (CONUS) according to their mean annual hydrographs. We identify five regime classes that summarize the behavior of catchments in the CONUS: (1) intermittent regime, (2) weak winter regime, (3) strong winter regime, (4) New Year's regime, and (5) melt regime. Our results show that these spatially contiguous classes are not only similar in terms of their regimes, but also their flood and drought behavior as well as their physiographical and meteorological characteristics. We therefore deem the functional regime classes valuable for a number of applications going beyond change assessments, including model validation studies or predictions of streamflow characteristics in ungauged basins. To assess future regime changes, we use simulated discharge time series obtained from the Variable Infiltration Capacity hydrologic model driven with meteorological time series generated by five general circulation models. A comparison of the future regime classes derived from these simulations with current classes shows that robust regime changes are expected only for currently melt-influenced regions in the Rocky Mountains. These changes in mountainous, upstream regions may require adaption of water management strategies to ensure sufficient water supply in dependent downstream regions.

Original languageEnglish
Pages (from-to)3951-3966
Number of pages16
JournalHydrology and Earth System Sciences
Volume24
Issue number8
DOIs
Publication statusPublished - 11 Aug 2020

Fingerprint Dive into the research topics of 'Future streamflow regime changes in the United States: Assessment using functional classification'. Together they form a unique fingerprint.

Cite this