FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies

Research output: Contribution to journalArticleAcademicpeer-review

96 Citations (Scopus)

Abstract

The disciplinary nature of most existing farm models as well as the issue specific orientation of most of the studies in agricultural systems research are main reasons for the limited use and re-use of bio-economic modelling for the ex-ante integrated assessment of policy decisions. The objective of this article is to present a bio-economic farm model that is generic and re-usable for different bio-physical and socio-economic contexts, facilitating the linking of micro and macro analysis or to provide detailed analysis of farming systems in a specific region. Model use is illustrated in this paper with an analysis of the impacts of the CAP reform of 2003 for arable and livestock farms in a context of market liberalization. Results from the application of the model to representative farms in Flevoland (the Netherlands) and Midi-Pyrenees (France) shows that CAP reform 2003 under market liberalization will cause substantial substitution of root crops and durum wheat by vegetables and oilseed crops. Much of the set-aside area will be put into production intensifying the existing farming systems. Abolishment of the milk quota system will cause an increase of the average herd size. The average total gross margin of farm types in Flevoland decreases while the average total gross margin of farms in Midi-Pyrenees increases. The results show that the model can simulate arable and livestock farm types of two regions different from a bio-physical and socio-economic point of view and it can deal with a variety of policy instruments. The examples show that the model can be (re-)used as a basis for future research and as a comprehensive tool for future policy analysis
Original languageEnglish
Pages (from-to)585-597
JournalAgricultural Systems
Volume103
Issue number8
DOIs
Publication statusPublished - 2010

    Fingerprint

Keywords

  • irrigated agriculture
  • cap reform
  • optimization
  • framework
  • pollution
  • region

Cite this