Abstract
The entry of SARS-CoV-2 into host cells proceeds by a proteolysis process, which involves the lysosomal peptidase cathepsin L. Inhibition of cathepsin L is therefore considered an effective method to decrease the virus internalization. Analysis from the perspective of structure-functionality elucidates that cathepsin L inhibitory proteins/peptides found in food share specific features: multiple disulfide crosslinks (buried in protein core), lack or low contents of (small) α-helices, and high surface hydrophobicity. Lactoferrin can inhibit cathepsin L, but not cathepsins B and H. This selective inhibition might be useful in fine targeting of cathepsin L. Molecular docking indicated that only the carboxyl-terminal lobe of lactoferrin interacts with cathepsin L and that the active site cleft of cathepsin L is heavily superposed by lactoferrin. A controlled proteolysis process might yield lactoferrin-derived peptides that strongly inhibit cathepsin L.
Original language | English |
---|---|
Article number | 173499 |
Journal | European Journal of Pharmacology |
Volume | 885 |
DOIs | |
Publication status | Published - 15 Oct 2020 |
Keywords
- COVID-19
- Food
- Infection
- Lactoferrin
- Protein
- Virus