Floral Induction in the Short-Day Plant Chrysanthemum Under Blue and Red Extended Long-Days

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)


Shorter photoperiod and lower daily light integral (DLI) limit the winter greenhouse production. Extending the photoperiod by supplemental light increases biomass production but inhibits flowering in short-day plants such as Chrysanthemum morifolium. Previously, we reported that flowering in growth-chamber grown chrysanthemum with red (R) and blue (B) LED-light could also be induced in long photoperiods by applying only blue light during the last 4h of 15h long-days. This study investigates the possibility to induce flowering by extending short-days in greenhouses with 4h of blue light. Furthermore, flower induction after 4h of red light extension was tested after short-days RB-LED light in a growth-chamber and after natural solar light in a greenhouse. Plants were grown at 11h of sole source RB light (60:40) in a growth-chamber or solar light in the greenhouse (short-days). Additionally, plants were grown under long-days, which either consisted of short-days as described above extended with 4h of B or R light to long-days or of 15h continuous RB light or natural solar light. Flower initiation and normal capitulum development occurred in the blue-extended long-days in the growth-chamber after 11h of sole source RB, similarly as in short-days. However, when the blue extension was applied after 11h of full-spectrum solar light in a greenhouse, no flower initiation occurred. With red-extended long-days after 11h RB (growth-chamber) flower initiation occurred, but capitulum development was hindered. No flower initiation occurred in red-extended long-days in the greenhouse. These results indicate that multiple components of the daylight spectrum influence different phases in photoperiodic flowering in chrysanthemum in a time-dependent manner. This research shows that smart use of LED-light can open avenues for a more efficient year-round cultivation of chrysanthemum by circumventing the short-day requirement for flowering when applied in emerging vertical farm or plant factories that operate without natural solar light. In current year-round greenhouses’ production, however, extension of the natural solar light during the first 11 h of the photoperiod with either red or blue sole LED light, did inhibit flowering.

Original languageEnglish
Article number610041
Pages (from-to)1-13
Number of pages13
JournalFrontiers in Plant Science
Publication statusPublished - 25 Jan 2021


  • blue extended long-day
  • chrysanthemum
  • morphology
  • photoperiodic flowering
  • supplemental lighting
  • vertical farm


Dive into the research topics of 'Floral Induction in the Short-Day Plant Chrysanthemum Under Blue and Red Extended Long-Days'. Together they form a unique fingerprint.

Cite this