First report of infections with isolates of the Asian genotype of Cucumber green mottle mosaic virus in cucumber crops in Belgium

Nelia Ortega Parra, Zafeiro Zisi, Elise Vogel*, Christine Vos, Inge Hanssen

*Corresponding author for this work

Research output: Contribution to journalLetterAcademic


In July 2019, four rows of cucumber plants (Cucumis sativus) in a commercial glasshouse in the north of Belgium showed severe mosaic, blistering and distortion of the leaves, with symptoms resembling those caused by Cucumber green mottle mosaic virus (CGMMV). CGMMV is a Tobamovirus that mainly affects cucurbit crops worldwide (Dombrovsky et al., 2017). Phylogenetic analyses in previous studies have shown two major clades, one including isolates that were initially identified in Europe and Russia (European genotype) and the second one with isolates initially identified in Asia and Israel (Asian genotype) (Dombrovsky et al., 2017; Pitman et al., 2022; Mackie et al., 2023). A symptomatic leaf sample was collected and total RNA was isolated from 100 mg of leaf tissue (Spectrum™ Plant Total RNA kit, Sigma-Aldrich). CGMMV was detected using a one-step TaqMan RT-qPCR (Hongyun et al., 2008). High-throughput sequencing (HTS) confirmed the presence of CGMMV. The sample was prepared using the Novel enrichment technique of viromes protocol (NETOVIR protocol, Conceição-Neto et al., 2015). The leaf material was homogenized, enriched for virus-like particles and the RNA was extracted (QIAamp Viral RNA mini kit, QIAGEN). The extract was randomly amplified (Whole Transcriptome Amplification kit, Sigma Aldrich), used for library preparation (Nextera XT DNA library preparation kit, Illumina) and sequenced on a NovaSeq platform. HTS data analysis was performed using Geneious Prime software (Biomatters, Auckland, New Zealand, version 2023.2). After quality filtering and trimming, 26.7M reads were obtained (132 nt mean length). In total, 20.6M reads were mapped to two genomes KP772568 and GQ411361 (considered as reference for the Asian and European genotypes respectively) with Geneious. This revealed 100% coverage of the full sequences (6422 nt) with 99.4% and 90% nucleotide identities to the reference genomes of Asian and European genotypes, respectively. Phylogenetic analyses confirmed that isolate 2019-26A-BE, with GenBank ID OR724740, relates to the Asian genotype. The HTS data were additionally processed using the ViPER pipeline (De Coninck, 2021). The raw reads were quality filtered and trimmed, (Trimmomatic) and then used to perform de novo assembly (metaSPAdes). The produced contigs were classified using DIAMOND and visualized with KronaTools. The results showed that no other virus was detected in the sample. Finally, cucumber seedlings were inoculated using the original symptomatic sample and were grown in a research glasshouse. After 3 weeks, severe CGMMV symptoms, similar to the original symptoms observed in the commercial glasshouse, were observed in the inoculated plants. Infection with CGMMV was verified via RT-qPCR, and the isolate present in the inoculated plants was confirmed to belong to the Asian genotype via RT-PCR-RFLP (Crespo et al., 2017). Later samplings of symptomatic leaves confirmed the presence of isolates belonging to the Asian genotype of CGMMV at four other commercial glasshouse locations, specializing in cucumber crop, in Belgium in 2020, 2021 and 2023 by RT-PCR-RFLP. While the Asian genotype was previously found elsewhere in Europe (Pitman et al., 2022), to our knowledge, this is the first report of infections with isolates of this genotype in glasshouse cucumber crops in Belgium. Further investigation is required to determine the spread and impact of infections with isolates of the Asian genotype in cucumber crops in Belgium.
Original languageEnglish
Pages (from-to)1121
JournalPlant Disease
Issue number4
Early online date1 Apr 2024
Publication statusPublished - 2024


Dive into the research topics of 'First report of infections with isolates of the Asian genotype of Cucumber green mottle mosaic virus in cucumber crops in Belgium'. Together they form a unique fingerprint.

Cite this