TY - JOUR
T1 - Finsler Streamline Tracking with Single Tensor Orientation Distribution Function for High Angular Resolution Diffusion Imaging
AU - Astola, L.J.
AU - Jalba, A.
AU - Balmashnova, E.
AU - Florack, L.
PY - 2011
Y1 - 2011
N2 - We introduce a new framework based on Riemann-Finsler geometry for the analysis of 3D images with spherical codomain, more precisely, for which each voxel contains a set of directional measurements represented as samples on the unit sphere (antipodal points identified). The application we consider here is in medical imaging, notably in High Angular Resolution Diffusion Imaging (HARDI), but the methods are general and can be applied also in other contexts, such as material science, et cetera, whenever direction dependent quantities are relevant. Finding neural axons in human brain white matter is of significant importance in understanding human neurophysiology, and the possibility to extract them from a HARDI image has a potentially major impact on clinical practice, such as in neuronavigation, deep brain stimulation, et cetera. In this paper we introduce a novel fiber tracking method which is a generalization of the streamline tracking used extensively in Diffusion Tensor Imaging (DTI). This method is capable of finding intersecting fibers in voxels with complex diffusion profiles, and does not involve solving extrema of these profiles. We also introduce a single tensor representation for the orientation distribution function (ODF) to model the probability that a vector corresponds to a tangent of a fiber. The single tensor representation is chosen because it allows a natural choice of Finsler norm as well as regularization via the Laplace-Beltrami operator. In addition we define a new connectivity measure for HARDI-curves to filter the most prominent fiber candidates. We show some very promising results on both synthetic and real data
AB - We introduce a new framework based on Riemann-Finsler geometry for the analysis of 3D images with spherical codomain, more precisely, for which each voxel contains a set of directional measurements represented as samples on the unit sphere (antipodal points identified). The application we consider here is in medical imaging, notably in High Angular Resolution Diffusion Imaging (HARDI), but the methods are general and can be applied also in other contexts, such as material science, et cetera, whenever direction dependent quantities are relevant. Finding neural axons in human brain white matter is of significant importance in understanding human neurophysiology, and the possibility to extract them from a HARDI image has a potentially major impact on clinical practice, such as in neuronavigation, deep brain stimulation, et cetera. In this paper we introduce a novel fiber tracking method which is a generalization of the streamline tracking used extensively in Diffusion Tensor Imaging (DTI). This method is capable of finding intersecting fibers in voxels with complex diffusion profiles, and does not involve solving extrema of these profiles. We also introduce a single tensor representation for the orientation distribution function (ODF) to model the probability that a vector corresponds to a tangent of a fiber. The single tensor representation is chosen because it allows a natural choice of Finsler norm as well as regularization via the Laplace-Beltrami operator. In addition we define a new connectivity measure for HARDI-curves to filter the most prominent fiber candidates. We show some very promising results on both synthetic and real data
KW - reconstruction
KW - space
KW - mri
U2 - 10.1007/s10851-011-0264-4
DO - 10.1007/s10851-011-0264-4
M3 - Article
SN - 0924-9907
VL - 41
SP - 170
EP - 181
JO - Journal of Mathematical Imaging and Vision
JF - Journal of Mathematical Imaging and Vision
IS - 3
ER -