Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis

S.B. Goodwin, S. Ben M'Barek, B. Dhillon, A.H.J. Wittenberg, C.F. Crane, J.K. Hane, A.J. Foster, T.A.J. van der Lee, J. Grimwood, A. Aerts, J. Antoniw, A. Bailey, B. Bluhm, J. Bowler, J. Bristow, A. van der Burgt, B. Canto-Canché, A.C.L. Churchill, L. Conde-Ferràez, H.J. CoolsP.M. Coutinho, M. Csukai, P. Dehal, P.J.G.M. de Wit, B. Donzelli, H.C. van de Geest, R.C.H.J. van Ham, K.E. Hammond-Kosack, B. Henrissat, A. Kilian, A.K. Kobayashi, E. Koopmann, Y. Kourmpetis, A. Kuzniar, E. Lindquist, V. Lombard, C.A. Maliepaard, N. Martins, A. Mehrabi, J.P.H. Nap, A. Ponomarenko, J.J. Rudd, A. Salamov, J. Schmutz, H.J. Schouten, H. Shapiro, I. Stergiopoulos, S.F.F. Torriani, H. Tu, R.P. de Vries, C. Waalwijk, S.B. Ware, A. Wiebenga, L.H. Zwiers, R.P. Oliver, I.V. Grigoriev, G.H.J. Kema

Research output: Contribution to journalArticleAcademicpeer-review

313 Citations (Scopus)

Abstract

The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed “mesosynteny” is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors. Author Summary The plant-pathogenic fungus Mycosphaerella graminicola causes septoria tritici blotch, one of the most economically important diseases of wheat worldwide and a potential threat to global food production. Unlike most other plant pathogens, M. graminicola has a long latent period during which it seems able to evade host defenses, and its genome appears to be unstable with many chromosomes that can change size or be lost during sexual reproduction. To understand its unusual mechanism of pathogenicity and high genomic plasticity, the genome of M. graminicola was sequenced more completely than that of any other filamentous fungus. The finished sequence contains 21 chromosomes, eight of which were different from those in the core genome and appear to have originated by ancient horizontal transfer from an unknown donor. The dispensable chromosomes collectively comprise the dispensome and showed extreme plasticity during sexual reproduction. A surprising feature of the M. graminicola genome was a low number of genes for enzymes that break down plant cell walls; this may represent an evolutionary response to evade detection by plant defense mechanisms. The stealth pathogenicity of M. graminicola may involve degradation of proteins rather than carbohydrates and could have evolved from an endophytic ancestor.
Original languageEnglish
Article numbere1002070
Number of pages17
JournalPlos Genetics
Volume7
Issue number6
DOIs
Publication statusPublished - 2011

    Fingerprint

Keywords

  • magnaporthe-grisea
  • b-chromosomes
  • gene
  • host
  • organization
  • annotation
  • resistance
  • neurospora
  • expression
  • symbiosis

Cite this