Feed‐food competition in global aquaculture: Current trends and prospects

Research output: Contribution to journalArticleAcademicpeer-review

25 Citations (Scopus)

Abstract

Feed-food competition is the allocation of resources that can be used to feed humans to animal feed instead, a current but unsustainable practise not well documented for aquaculture. Here, we analysed feed-food competition in aquaculture using two measures; natural trophic levels (TLs) and species-specific human-edible protein conversion ratios (HePCRs). The HePCR equals the ratio of human edible protein in feed (input) to the human edible protein in animal produce (output). To provide prospects on aquaculture's potential to convert human inedible by-products into edible biomass, data on aquaculture production were collected and categorized based on natural TLs. HePCRs were computed for four aquaculture species produced in intensive aquaculture systems: Atlantic salmon, common carp, Nile tilapia and whiteleg shrimp. Under current feed use, we estimated that the carp, tilapia and shrimp considered were net contributors of protein by requiring ~0.6 kg of human edible protein to produce 1 kg of protein in the fillet/meat. Considering soya bean meal and fishmeal as food-competing ingredients increased the HePCR to ~2 and turned all of the case-study species into net consumers of protein. To prevent this increase, the use of high-quality food-competing ingredients such as fishmeal, or soya bean products should be minimized in aquaculture feed. In the future, the role of aquaculture in circular food systems will most likely consist of a balanced mix of species at different TLs and from different aquaculture systems, depending on the by-products available.
Original languageEnglish
Pages (from-to)1142-1158
JournalReviews in Aquaculture
Volume15
Issue number3
Early online date6 Mar 2023
DOIs
Publication statusPublished - Jun 2023

Fingerprint

Dive into the research topics of 'Feed‐food competition in global aquaculture: Current trends and prospects'. Together they form a unique fingerprint.

Cite this