Feasibility of Cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations

A. Hassani-Mehraban, S. Creutzburg, L. van Heereveld, R.J.M. Kormelink*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

35 Citations (Scopus)


Within the last decade Virus-Like Particles (VLPs) have increasingly received attention from scientists for their use as a carrier of (peptide) molecules or as scaffold to present epitopes for use in subunit vaccines. To test the feasibility of Cowpea chlorotic mottle virus (CCMV) particles as a scaffold for epitope presentation and identify sites for epitope fusion or insertion that would not interfere with virus-like-particle formation, chimeric CCMV coat protein (CP) gene constructs were engineered, followed by expression in E. coli and assessment of VLP formation. Various constructs were made encoding a 6x-His-tag, or selected epitopes from Influenza A virus [IAV] (M2e, HA) or Foot and Mouth Disease Virus [FMDV] (VP1 and 2C). The epitopes were either inserted 1) in predicted exposed loop structures of the CCMV CP protein, 2) fused to the amino- (N) or carboxyl-terminal (C) ends, or 3) to a N-terminal 24 amino acid (aa) deletion mutant (N¿24-CP) of the CP protein. Results High levels of insoluble protein expression, relative to proteins from the entire cell lysate, were obtained for CCMV CP and all chimeric derivatives. A straightforward protocol was used that, without the use of purification columns, successfully enabled CCMV CP protein solubilization, reassembly and subsequent collection of CCMV CP VLPs. While insertions of His-tag or M2e (7-23 aa) into the predicted external loop structures did abolish VLP formation, high yields of VLPs were obtained with all fusions of His-tag or various epitopes (13- 27 aa) from IAV and FMDV at the N- or C-terminal ends of CCMV CP or N¿24-CP. VLPs derived from CCMV CP still encapsulated RNA, while those from CCMV CP-chimera containing a negatively charged N-terminal domain had lost this ability. The usefulness and rapid ease of exploitation of CCMV VLPs for the production of potential subunit vaccines was demonstrated with the synthesis of chimeric CCMV VLPs containing selected sequences from the G N and G C glycoproteins of the recently emerged Schmallenberg orthobunyavirus at both termini of the CP protein. Conclusions CCMV VLPs can be successfully exploited as scaffold for epitope fusions up to 31 aa at the N- and C-terminus, and at a N-terminal 24 amino acid (aa) deletion mutant (N¿24-CP) of the CP protein.
Original languageEnglish
Article number80
Number of pages17
JournalBMC Biotechnology
Publication statusPublished - 2015


  • CCMV
  • Foot and mouth disease virus
  • Influenza A virus
  • prokaryote expression system
  • Schmallenberg virus
  • viral nanoparticles
  • virus-like particles
  • VLP


Dive into the research topics of 'Feasibility of Cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations'. Together they form a unique fingerprint.

Cite this