Farming option for The Netherlands explored by multi-objective modelling

H.F.M. ten Berge, M.K. van Ittersum, W.A.H. Rossing, G.W.J. van de Ven, J. van de Schans, P.A.C.M. van de Sanden

Research output: Contribution to journalArticleAcademicpeer-review

71 Citations (Scopus)

Abstract

Intensive agriculture in The Netherlands has a price in the form of environmental degradation and the diminution of nature and landscape values. A reorientation of farming is needed to find a new balance between economic goals and rural employment, and care for clean water and air, animal well-being, safe food, and the preservation of soil, landscape and biodiversity. The search for farm systems that meet such multiple goals requires a systematic combination of (a) agrotechnical, agroecological and agroeconomic knowledge, with (b) the stakeholders' joint agreement on normative objectives, to arrive at conceptual new designs followed by (c) empirical work to test, adapt and refine these under real commercial farming conditions. In this paper explorative modelling at the whole farm level is presented as a method that effectively integrates component knowledge at crop or animal level, and outlines the consequences of particular choices on scientific grounds. This enables quantitative consideration of a broad spectrum of alternative farming systems, including very innovative and risky ones, before empirical work starts. It thus contributes to a transparent learning and development process needed to arrive at farm concepts acceptable to both entrepreneurs and society. Three case studies are presented to illustrate the method: dairy farming on sandy soils; highly intensified flower bulb industry in sensitive areas in the western Netherlands; and integrated arable farming. Trade-offs between economic and environmental objectives were assessed in all three cases, as well as virtual farm configurations that best satisfy specified priority settings of objectives. In two of the three cases the mutual reinforcement and true integration of modelling and on-farm empirical research appeared difficult, but for obvious reasons. Only in the flower bulb case was the explorative approach utilized to its full potential by involving a broad platform of stakeholders. The other two case studies lacked such formalised platforms and their impact remained limited. Three critical success factors for explorative modelling are identified: to cover a well-differentiated spectrum of possible production technologies; early timing of modelling work relative to empirical farm prototyping; and involvement of stakeholders throughout.
Original languageEnglish
Pages (from-to)263-277
JournalEuropean Journal of Agronomy
Volume13
DOIs
Publication statusPublished - 2000

Fingerprint

Dive into the research topics of 'Farming option for The Netherlands explored by multi-objective modelling'. Together they form a unique fingerprint.

Cite this