TY - JOUR
T1 - Facile Amidation of Non-Protected Hydroxycinnamic Acids for the Synthesis of Natural Phenol Amides
AU - van Zadelhoff, Annemiek
AU - Vincken, Jean Paul
AU - de Bruijn, Wouter J.C.
PY - 2022/3/28
Y1 - 2022/3/28
N2 - Phenol amides are bioactive compounds naturally present in many plants. This class of compounds is known for antioxidant, anti-inflammatory, and anticancer activities. To better under-stand the reactivity and structure–bioactivity relationships of phenol amides, a large set of structurally diverse pure compounds are needed, however purification from plants is inefficient and labo-rious. Existing syntheses require multiple steps, including protection of functional groups and are generally overly complicated and only suitable for specific combinations of hydroxycinnamic acid and amine. Thus, to facilitate further studies on these promising compounds, we aimed to develop a facile general synthetic route to obtain phenol amides with a wide structural diversity. The result is a protocol for straightforward one-pot synthesis of phenol amides at room temperature within 25 h using equimolar amounts of N,N′-dicyclohexylcarbodiimide (DCC), amine, hydroxycinnamic acid, and sodium bicarbonate in aqueous acetone. Eight structurally diverse phenol amides were synthesized and fully chemically characterized. The facile synthetic route described in this work is suitable for a wide variety of biologically relevant phenol amides, consisting of different hy-droxycinnamic acid subunits (coumaric acid, ferulic acid, and sinapic acid) and amine subunits (ag-matine, anthranilic acid, putrescine, serotonin, tyramine, and tryptamine) with yields ranging between 14% and 24%.
AB - Phenol amides are bioactive compounds naturally present in many plants. This class of compounds is known for antioxidant, anti-inflammatory, and anticancer activities. To better under-stand the reactivity and structure–bioactivity relationships of phenol amides, a large set of structurally diverse pure compounds are needed, however purification from plants is inefficient and labo-rious. Existing syntheses require multiple steps, including protection of functional groups and are generally overly complicated and only suitable for specific combinations of hydroxycinnamic acid and amine. Thus, to facilitate further studies on these promising compounds, we aimed to develop a facile general synthetic route to obtain phenol amides with a wide structural diversity. The result is a protocol for straightforward one-pot synthesis of phenol amides at room temperature within 25 h using equimolar amounts of N,N′-dicyclohexylcarbodiimide (DCC), amine, hydroxycinnamic acid, and sodium bicarbonate in aqueous acetone. Eight structurally diverse phenol amides were synthesized and fully chemically characterized. The facile synthetic route described in this work is suitable for a wide variety of biologically relevant phenol amides, consisting of different hy-droxycinnamic acid subunits (coumaric acid, ferulic acid, and sinapic acid) and amine subunits (ag-matine, anthranilic acid, putrescine, serotonin, tyramine, and tryptamine) with yields ranging between 14% and 24%.
KW - amidation
KW - avenanthramides
KW - hydroxycinnamic acid amides (HCAAs)
KW - phenyl amides
U2 - 10.3390/molecules27072203
DO - 10.3390/molecules27072203
M3 - Article
C2 - 35408599
AN - SCOPUS:85127879161
SN - 1420-3049
VL - 27
JO - Molecules
JF - Molecules
IS - 7
M1 - 2203
ER -