Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean fringing reef linked to local human disturbance gradients

Didier M. Bakker*, Fleur C. Duyl, Chris T. Perry, Erik H. Meesters

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)

Abstract

The capacity of coral reefs to maintain their structurally complex frameworks andto retain the potential for vertical accretion is vitally important to the persistenceof their ecological functioning and the ecosystem services they sustain. However,datasets to support detailed along‐coast assessments of framework production rates and accretion potential do not presently exist. Here, we estimate, based on gross bioaccretion and bioerosion measures, the carbonate budgets and resultant estimated accretion rates (EAR) of the shallow reef zone of leeward Bonaire – between 5 and 12 m depth – at unique fine spatial resolution along this coast (115 sites). Whilst the fringing reef of Bonaire is often reported to be in a better ecological condition than most sites throughout the wider Caribbean region, our data show that the carbonate budgets of the reefs and derived EAR varied considerably across this ~58 km long fringing reef complex. Some areas, in particular the marine reserves, were indeed still dominated by structurally complex coral communities with high net carbonate production (>10 kg CaCO3 m−2 year−1), high live coral cover and complex structural topography. The majority of the studied sites, however, were defined by relatively low budget states (<2 kg CaCO3 m−2 year−1) or were in a state of net erosion. These data highlight the marked spatial heterogeneity that can occur in budget states, andthus in reef accretion potential, even between quite closely spaced areas of individual reef complexes. This heterogeneity is linked strongly to the degree of localized landbased impacts along the coast, and resultant differences in the abundance of reef framework building coral species. The major impact of this variability is that those sections of reef defined by low‐accretion rates will have limited capacity to maintain their structural integrity and to keep pace with current projections of climate change induced sea‐level rise (SLR), thus posing a threat to reef functioning and biodiversity, potentially leading to trophic cascades. Since many Caribbean reefs are more severely degraded than those found around Bonaire, it is to be expected that the findings presentedhere are rather the rule than the exception, but the study also highlights theneed for similar high spatial resolution (along‐coast) assessments of budget states and accretion rates to meaningfully explore increasing coastal risk at the country level. The findings also more generally underline the significance of reducing local anthropo‐ genic disturbance and restoring framework building coral assemblages. Appropriately focussed local preservation efforts may aid in averting future large‐scale above reef water depth increases on Caribbean coral reefs and will limit the social and economic implications associated with the loss of reef goods and services.





Original languageEnglish
Pages (from-to)4092-4104
JournalGlobal Change Biology
Volume25
Issue number12
DOIs
Publication statusPublished - Dec 2019

Fingerprint

fringing reef
Reefs
Carbonates
reef
accretion
disturbance
carbonate
coral
coral reef
spatial resolution
bioerosion
Coastal zones
trophic cascade
coast
marine park
ecosystem service
water depth
Biodiversity
Structural integrity
rate

Keywords

  • Acropora cervicornis
  • bioerosion
  • Bonaire
  • calcification
  • carbonate budget
  • Caribbean
  • climate change
  • sea-level rise

Cite this

@article{6056032416de412bbf1f71120c5eaf4a,
title = "Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean fringing reef linked to local human disturbance gradients",
abstract = "The capacity of coral reefs to maintain their structurally complex frameworks andto retain the potential for vertical accretion is vitally important to the persistenceof their ecological functioning and the ecosystem services they sustain. However,datasets to support detailed along‐coast assessments of framework production rates and accretion potential do not presently exist. Here, we estimate, based on gross bioaccretion and bioerosion measures, the carbonate budgets and resultant estimated accretion rates (EAR) of the shallow reef zone of leeward Bonaire – between 5 and 12 m depth – at unique fine spatial resolution along this coast (115 sites). Whilst the fringing reef of Bonaire is often reported to be in a better ecological condition than most sites throughout the wider Caribbean region, our data show that the carbonate budgets of the reefs and derived EAR varied considerably across this ~58 km long fringing reef complex. Some areas, in particular the marine reserves, were indeed still dominated by structurally complex coral communities with high net carbonate production (>10 kg CaCO3 m−2 year−1), high live coral cover and complex structural topography. The majority of the studied sites, however, were defined by relatively low budget states (<2 kg CaCO3 m−2 year−1) or were in a state of net erosion. These data highlight the marked spatial heterogeneity that can occur in budget states, andthus in reef accretion potential, even between quite closely spaced areas of individual reef complexes. This heterogeneity is linked strongly to the degree of localized landbased impacts along the coast, and resultant differences in the abundance of reef framework building coral species. The major impact of this variability is that those sections of reef defined by low‐accretion rates will have limited capacity to maintain their structural integrity and to keep pace with current projections of climate change induced sea‐level rise (SLR), thus posing a threat to reef functioning and biodiversity, potentially leading to trophic cascades. Since many Caribbean reefs are more severely degraded than those found around Bonaire, it is to be expected that the findings presentedhere are rather the rule than the exception, but the study also highlights theneed for similar high spatial resolution (along‐coast) assessments of budget states and accretion rates to meaningfully explore increasing coastal risk at the country level. The findings also more generally underline the significance of reducing local anthropo‐ genic disturbance and restoring framework building coral assemblages. Appropriately focussed local preservation efforts may aid in averting future large‐scale above reef water depth increases on Caribbean coral reefs and will limit the social and economic implications associated with the loss of reef goods and services.",
keywords = "Acropora cervicornis, bioerosion, Bonaire, calcification, carbonate budget, Caribbean, climate change, sea-level rise",
author = "Bakker, {Didier M.} and Duyl, {Fleur C.} and Perry, {Chris T.} and Meesters, {Erik H.}",
year = "2019",
month = "12",
doi = "10.1111/gcb.14800",
language = "English",
volume = "25",
pages = "4092--4104",
journal = "Global Change Biology",
issn = "1354-1013",
publisher = "Wiley",
number = "12",

}

Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean fringing reef linked to local human disturbance gradients. / Bakker, Didier M.; Duyl, Fleur C.; Perry, Chris T.; Meesters, Erik H.

In: Global Change Biology, Vol. 25, No. 12, 12.2019, p. 4092-4104.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean fringing reef linked to local human disturbance gradients

AU - Bakker, Didier M.

AU - Duyl, Fleur C.

AU - Perry, Chris T.

AU - Meesters, Erik H.

PY - 2019/12

Y1 - 2019/12

N2 - The capacity of coral reefs to maintain their structurally complex frameworks andto retain the potential for vertical accretion is vitally important to the persistenceof their ecological functioning and the ecosystem services they sustain. However,datasets to support detailed along‐coast assessments of framework production rates and accretion potential do not presently exist. Here, we estimate, based on gross bioaccretion and bioerosion measures, the carbonate budgets and resultant estimated accretion rates (EAR) of the shallow reef zone of leeward Bonaire – between 5 and 12 m depth – at unique fine spatial resolution along this coast (115 sites). Whilst the fringing reef of Bonaire is often reported to be in a better ecological condition than most sites throughout the wider Caribbean region, our data show that the carbonate budgets of the reefs and derived EAR varied considerably across this ~58 km long fringing reef complex. Some areas, in particular the marine reserves, were indeed still dominated by structurally complex coral communities with high net carbonate production (>10 kg CaCO3 m−2 year−1), high live coral cover and complex structural topography. The majority of the studied sites, however, were defined by relatively low budget states (<2 kg CaCO3 m−2 year−1) or were in a state of net erosion. These data highlight the marked spatial heterogeneity that can occur in budget states, andthus in reef accretion potential, even between quite closely spaced areas of individual reef complexes. This heterogeneity is linked strongly to the degree of localized landbased impacts along the coast, and resultant differences in the abundance of reef framework building coral species. The major impact of this variability is that those sections of reef defined by low‐accretion rates will have limited capacity to maintain their structural integrity and to keep pace with current projections of climate change induced sea‐level rise (SLR), thus posing a threat to reef functioning and biodiversity, potentially leading to trophic cascades. Since many Caribbean reefs are more severely degraded than those found around Bonaire, it is to be expected that the findings presentedhere are rather the rule than the exception, but the study also highlights theneed for similar high spatial resolution (along‐coast) assessments of budget states and accretion rates to meaningfully explore increasing coastal risk at the country level. The findings also more generally underline the significance of reducing local anthropo‐ genic disturbance and restoring framework building coral assemblages. Appropriately focussed local preservation efforts may aid in averting future large‐scale above reef water depth increases on Caribbean coral reefs and will limit the social and economic implications associated with the loss of reef goods and services.

AB - The capacity of coral reefs to maintain their structurally complex frameworks andto retain the potential for vertical accretion is vitally important to the persistenceof their ecological functioning and the ecosystem services they sustain. However,datasets to support detailed along‐coast assessments of framework production rates and accretion potential do not presently exist. Here, we estimate, based on gross bioaccretion and bioerosion measures, the carbonate budgets and resultant estimated accretion rates (EAR) of the shallow reef zone of leeward Bonaire – between 5 and 12 m depth – at unique fine spatial resolution along this coast (115 sites). Whilst the fringing reef of Bonaire is often reported to be in a better ecological condition than most sites throughout the wider Caribbean region, our data show that the carbonate budgets of the reefs and derived EAR varied considerably across this ~58 km long fringing reef complex. Some areas, in particular the marine reserves, were indeed still dominated by structurally complex coral communities with high net carbonate production (>10 kg CaCO3 m−2 year−1), high live coral cover and complex structural topography. The majority of the studied sites, however, were defined by relatively low budget states (<2 kg CaCO3 m−2 year−1) or were in a state of net erosion. These data highlight the marked spatial heterogeneity that can occur in budget states, andthus in reef accretion potential, even between quite closely spaced areas of individual reef complexes. This heterogeneity is linked strongly to the degree of localized landbased impacts along the coast, and resultant differences in the abundance of reef framework building coral species. The major impact of this variability is that those sections of reef defined by low‐accretion rates will have limited capacity to maintain their structural integrity and to keep pace with current projections of climate change induced sea‐level rise (SLR), thus posing a threat to reef functioning and biodiversity, potentially leading to trophic cascades. Since many Caribbean reefs are more severely degraded than those found around Bonaire, it is to be expected that the findings presentedhere are rather the rule than the exception, but the study also highlights theneed for similar high spatial resolution (along‐coast) assessments of budget states and accretion rates to meaningfully explore increasing coastal risk at the country level. The findings also more generally underline the significance of reducing local anthropo‐ genic disturbance and restoring framework building coral assemblages. Appropriately focussed local preservation efforts may aid in averting future large‐scale above reef water depth increases on Caribbean coral reefs and will limit the social and economic implications associated with the loss of reef goods and services.

KW - Acropora cervicornis

KW - bioerosion

KW - Bonaire

KW - calcification

KW - carbonate budget

KW - Caribbean

KW - climate change

KW - sea-level rise

U2 - 10.1111/gcb.14800

DO - 10.1111/gcb.14800

M3 - Article

VL - 25

SP - 4092

EP - 4104

JO - Global Change Biology

JF - Global Change Biology

SN - 1354-1013

IS - 12

ER -