TY - JOUR
T1 - Exposure to the mycotoxin deoxynivalenol reduces the transport of conjugated bile acids by intestinal Caco-2 cells
AU - Wang, Jingxuan
AU - Bakker, Wouter
AU - Zheng, Weijia
AU - de Haan, Laura
AU - Rietjens, Ivonne M.C.M.
AU - Bouwmeester, Hans
PY - 2022/5
Y1 - 2022/5
N2 - Conjugated bile acids are synthesized in liver and subsequently secreted into the intestinal lumen from which they are actively reabsorbed and transported back to liver. The efficient enterohepatic circulation of conjugated bile acids is important to maintain homeostasis. The mycotoxin deoxynivalenol (DON) is a fungal secondary metabolite that contaminates cereal food. Upon human exposure, it can cause intestinal dysfunction. We explored the effects of DON exposure on the intestinal absorption of conjugated bile acids and the expression of bile acid transporters using an in vitro model based on Caco-2 cell layers grown in transwells. Our study shows that the transport rate of taurocholic acid (TCA) is decreased after 48-h pre-exposure of the Caco-2 cells to 2 µM DON, which is a realistic intestinal DON concentration. Exposure to DON downregulates expression of the genes coding for the apical sodium-dependent bile acid transporter (ASBT), the ileal bile acid-binding protein (IBABP) and the organic solute transporter α (OSTα), and it counteracts the agonist activity of Farnesoid X receptor (FXR) agonist GW4064 on these genes. In addition, the transport of ten taurine or glycine-conjugated bile acids in a physiological relevant mixture by the intestinal Caco-2 cell layers was decreased after pre-exposure of the cells to DON, pointing at a potential for DON-mediated accumulation of the conjugated bile acids at the intestinal luminal side. Together the results reveal that DON inhibits intestinal bile acid reabsorption by reducing the expression of bile acid transporters thereby affecting bile acid intestinal kinetics, leading to bile acid malabsorption in the intestine. Our study provides new insights into the hazards of DON exposure.
AB - Conjugated bile acids are synthesized in liver and subsequently secreted into the intestinal lumen from which they are actively reabsorbed and transported back to liver. The efficient enterohepatic circulation of conjugated bile acids is important to maintain homeostasis. The mycotoxin deoxynivalenol (DON) is a fungal secondary metabolite that contaminates cereal food. Upon human exposure, it can cause intestinal dysfunction. We explored the effects of DON exposure on the intestinal absorption of conjugated bile acids and the expression of bile acid transporters using an in vitro model based on Caco-2 cell layers grown in transwells. Our study shows that the transport rate of taurocholic acid (TCA) is decreased after 48-h pre-exposure of the Caco-2 cells to 2 µM DON, which is a realistic intestinal DON concentration. Exposure to DON downregulates expression of the genes coding for the apical sodium-dependent bile acid transporter (ASBT), the ileal bile acid-binding protein (IBABP) and the organic solute transporter α (OSTα), and it counteracts the agonist activity of Farnesoid X receptor (FXR) agonist GW4064 on these genes. In addition, the transport of ten taurine or glycine-conjugated bile acids in a physiological relevant mixture by the intestinal Caco-2 cell layers was decreased after pre-exposure of the cells to DON, pointing at a potential for DON-mediated accumulation of the conjugated bile acids at the intestinal luminal side. Together the results reveal that DON inhibits intestinal bile acid reabsorption by reducing the expression of bile acid transporters thereby affecting bile acid intestinal kinetics, leading to bile acid malabsorption in the intestine. Our study provides new insights into the hazards of DON exposure.
KW - Bile acid reabsorption
KW - Bile acid transporters
KW - Conjugated bile acids
KW - Deoxynivalenol
U2 - 10.1007/s00204-022-03256-8
DO - 10.1007/s00204-022-03256-8
M3 - Article
C2 - 35224661
AN - SCOPUS:85125369751
SN - 0340-5761
VL - 96
SP - 1473
EP - 1482
JO - Archives of Toxicology
JF - Archives of Toxicology
IS - 5
ER -