TY - JOUR
T1 - Exploring the potential of earthworm gut bacteria for plastic degradation
AU - Munhoz, Davi R.
AU - Meng, Ke
AU - Wang, Lang
AU - Lwanga, Esperanza Huerta
AU - Geissen, Violette
AU - Harkes, Paula
PY - 2024/6/1
Y1 - 2024/6/1
N2 - The use of plastic mulch films in agriculture leads to the inevitable accumulation of plastic debris in soils. Here, we explored the potential of earthworm gut-inhabiting bacterial strains (Mycobacterium vanbaalenii (MV), Rhodococcus jostii (RJ), Streptomyces fulvissimus (SF), Bacillus simplex (BS), and Sporosarcina globispora (SG) to degrade plastic films (⌀ = 15 mm) made from commonly used polymers: low-density polyethylene film (LDPE-f), polylactic acid (PLA-f), polybutylene adipate terephthalate film (PBAT-f), and a commercial biodegradable mulch film, Bionov-B® (composed of Mater-Bi, a feedstock with PBAT, PLA and other chemical compounds). A 180-day experiment was conducted at room temperature (x̄ =19.4 °C) for different strain–plastic combinations under a low carbon media (0.1× tryptic soy broth). Results showed that the tested strain–plastic combinations did not facilitate the degradation of LDPE-f (treated with RJ and SF), PBAT-f (treated with BS and SG), and Bionov-B (treated with BS, MV, and SG). However, incubating PLA-f with SF triggered a reduction in the molecular weights and an increase in crystallinity. Therefore, we used PLA-f as model plastic to study the influence of temperature (“room temperature” & “30 °C”), carbon source (“carbon-free” & “low carbon supply”), and strain interactions (“single strains” & “strain mixtures”) on PLA degradation. SF and SF + RJ treatments significantly fostered PLA degradation under 30 °C in a low-carbon media. PLA-f did not show any degradation in carbon-free media treatments. The competition between different strains in the same system likely hindered the performance of PLA-degrading strains. A positive correlation between the final pH of culture media and PLA-f weight loss was observed, which might reflect the pH-dependent hydrolysis mechanism of PLA. Our results situate SF and its co-culture with RJ strains as possible accelerators of PLA degradation in temperatures below PLA glass transition temperature (Tg). Further studies are needed to test the bioremediation feasibility in soils.
AB - The use of plastic mulch films in agriculture leads to the inevitable accumulation of plastic debris in soils. Here, we explored the potential of earthworm gut-inhabiting bacterial strains (Mycobacterium vanbaalenii (MV), Rhodococcus jostii (RJ), Streptomyces fulvissimus (SF), Bacillus simplex (BS), and Sporosarcina globispora (SG) to degrade plastic films (⌀ = 15 mm) made from commonly used polymers: low-density polyethylene film (LDPE-f), polylactic acid (PLA-f), polybutylene adipate terephthalate film (PBAT-f), and a commercial biodegradable mulch film, Bionov-B® (composed of Mater-Bi, a feedstock with PBAT, PLA and other chemical compounds). A 180-day experiment was conducted at room temperature (x̄ =19.4 °C) for different strain–plastic combinations under a low carbon media (0.1× tryptic soy broth). Results showed that the tested strain–plastic combinations did not facilitate the degradation of LDPE-f (treated with RJ and SF), PBAT-f (treated with BS and SG), and Bionov-B (treated with BS, MV, and SG). However, incubating PLA-f with SF triggered a reduction in the molecular weights and an increase in crystallinity. Therefore, we used PLA-f as model plastic to study the influence of temperature (“room temperature” & “30 °C”), carbon source (“carbon-free” & “low carbon supply”), and strain interactions (“single strains” & “strain mixtures”) on PLA degradation. SF and SF + RJ treatments significantly fostered PLA degradation under 30 °C in a low-carbon media. PLA-f did not show any degradation in carbon-free media treatments. The competition between different strains in the same system likely hindered the performance of PLA-degrading strains. A positive correlation between the final pH of culture media and PLA-f weight loss was observed, which might reflect the pH-dependent hydrolysis mechanism of PLA. Our results situate SF and its co-culture with RJ strains as possible accelerators of PLA degradation in temperatures below PLA glass transition temperature (Tg). Further studies are needed to test the bioremediation feasibility in soils.
U2 - 10.1016/j.scitotenv.2024.172175
DO - 10.1016/j.scitotenv.2024.172175
M3 - Article
SN - 0048-9697
VL - 927
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 172175
ER -