Exploring natural genetic variation in tomato sucrose synthases on the basis of increased kinetic properties

Quy Dung Dinh, Richard Finkers, Adrie H. Westphal, Walter M.A.M. van Dongen, Richard G.F. Visser, Luisa M. Trindade

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)

Abstract

Sucrose synthase (SuSy) is one key enzyme directly hydrolyzing sucrose to supply substrates for plant metabolism, and is considered to be a biomarker for plant sink strength. Improvement in plant sink strength could lead to enhanced plant growth and yield. Cultivated tomatoes are known to have a narrow genetic diversity, which hampers further breeding for novel and improved traits in new cultivars. In this study, we observed limited genetic variation in SuSy1, SuSy3 and SuSy4 in 53 accessions of cultivated tomato and landraces, but identified a wealth of genetic diversity in 32 accessions of related wild species. The variation in the deduced amino acid sequences was grouped into 23, 22, and 17 distinct haplotypes for SuSy1/3/4, respectively. Strikingly, all known substrate binding sites were highly conserved, as well as most of the phosphorylation sites except in SuSy1. Two SuSy1 and three SuSy3 protein variants were heterologously expressed to study the effect of the amino acid changes on enzyme kinetic properties, i.e. maximal sucrose hydrolyzing capacity (Vmax), affinity for sucrose (Km), and catalytic efficiency (Vmax/Km) at 25°C and 16°C. SuSy1-haplotype#3 containing phosphorylation site Ser-16 did not have an improvement in the kinetic properties compared to the reference SuSy1-haplotype#1 containing Arg-16. Meanwhile SuSy3-haplotype#9 from a wild accession, containing four amino acid changes S53A, S106I, E727D and K741E, showed an increase in Vmax/Km at 16°C compared to the reference SuSy3-haplotype#1. This study demonstrates that SuSy kinetic properties can be enhanced by exploiting natural variation, and the potential of this enzyme to improve sucrose metabolism and eventually sink strength in planta.

Original languageEnglish
Article numbere0206636
JournalPLoS ONE
Volume13
Issue number10
DOIs
Publication statusPublished - 29 Oct 2018

Fingerprint

sucrose synthase
Lycopersicon esculentum
Haplotypes
Sucrose
haplotypes
tomatoes
kinetics
genetic variation
Phosphorylation
sucrose
Amino Acids
Metabolism
phosphorylation
Enzymes
Enzyme kinetics
Biomarkers
Substrates
enzyme kinetics
amino acids
metabolism

Cite this

@article{0a9173164e024b72962dc57b51efbf56,
title = "Exploring natural genetic variation in tomato sucrose synthases on the basis of increased kinetic properties",
abstract = "Sucrose synthase (SuSy) is one key enzyme directly hydrolyzing sucrose to supply substrates for plant metabolism, and is considered to be a biomarker for plant sink strength. Improvement in plant sink strength could lead to enhanced plant growth and yield. Cultivated tomatoes are known to have a narrow genetic diversity, which hampers further breeding for novel and improved traits in new cultivars. In this study, we observed limited genetic variation in SuSy1, SuSy3 and SuSy4 in 53 accessions of cultivated tomato and landraces, but identified a wealth of genetic diversity in 32 accessions of related wild species. The variation in the deduced amino acid sequences was grouped into 23, 22, and 17 distinct haplotypes for SuSy1/3/4, respectively. Strikingly, all known substrate binding sites were highly conserved, as well as most of the phosphorylation sites except in SuSy1. Two SuSy1 and three SuSy3 protein variants were heterologously expressed to study the effect of the amino acid changes on enzyme kinetic properties, i.e. maximal sucrose hydrolyzing capacity (Vmax), affinity for sucrose (Km), and catalytic efficiency (Vmax/Km) at 25°C and 16°C. SuSy1-haplotype#3 containing phosphorylation site Ser-16 did not have an improvement in the kinetic properties compared to the reference SuSy1-haplotype#1 containing Arg-16. Meanwhile SuSy3-haplotype#9 from a wild accession, containing four amino acid changes S53A, S106I, E727D and K741E, showed an increase in Vmax/Km at 16°C compared to the reference SuSy3-haplotype#1. This study demonstrates that SuSy kinetic properties can be enhanced by exploiting natural variation, and the potential of this enzyme to improve sucrose metabolism and eventually sink strength in planta.",
author = "Dinh, {Quy Dung} and Richard Finkers and Westphal, {Adrie H.} and {van Dongen}, {Walter M.A.M.} and Visser, {Richard G.F.} and Trindade, {Luisa M.}",
year = "2018",
month = "10",
day = "29",
doi = "10.1371/journal.pone.0206636",
language = "English",
volume = "13",
journal = "PLoS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "10",

}

Exploring natural genetic variation in tomato sucrose synthases on the basis of increased kinetic properties. / Dinh, Quy Dung; Finkers, Richard; Westphal, Adrie H.; van Dongen, Walter M.A.M.; Visser, Richard G.F.; Trindade, Luisa M.

In: PLoS ONE, Vol. 13, No. 10, e0206636, 29.10.2018.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Exploring natural genetic variation in tomato sucrose synthases on the basis of increased kinetic properties

AU - Dinh, Quy Dung

AU - Finkers, Richard

AU - Westphal, Adrie H.

AU - van Dongen, Walter M.A.M.

AU - Visser, Richard G.F.

AU - Trindade, Luisa M.

PY - 2018/10/29

Y1 - 2018/10/29

N2 - Sucrose synthase (SuSy) is one key enzyme directly hydrolyzing sucrose to supply substrates for plant metabolism, and is considered to be a biomarker for plant sink strength. Improvement in plant sink strength could lead to enhanced plant growth and yield. Cultivated tomatoes are known to have a narrow genetic diversity, which hampers further breeding for novel and improved traits in new cultivars. In this study, we observed limited genetic variation in SuSy1, SuSy3 and SuSy4 in 53 accessions of cultivated tomato and landraces, but identified a wealth of genetic diversity in 32 accessions of related wild species. The variation in the deduced amino acid sequences was grouped into 23, 22, and 17 distinct haplotypes for SuSy1/3/4, respectively. Strikingly, all known substrate binding sites were highly conserved, as well as most of the phosphorylation sites except in SuSy1. Two SuSy1 and three SuSy3 protein variants were heterologously expressed to study the effect of the amino acid changes on enzyme kinetic properties, i.e. maximal sucrose hydrolyzing capacity (Vmax), affinity for sucrose (Km), and catalytic efficiency (Vmax/Km) at 25°C and 16°C. SuSy1-haplotype#3 containing phosphorylation site Ser-16 did not have an improvement in the kinetic properties compared to the reference SuSy1-haplotype#1 containing Arg-16. Meanwhile SuSy3-haplotype#9 from a wild accession, containing four amino acid changes S53A, S106I, E727D and K741E, showed an increase in Vmax/Km at 16°C compared to the reference SuSy3-haplotype#1. This study demonstrates that SuSy kinetic properties can be enhanced by exploiting natural variation, and the potential of this enzyme to improve sucrose metabolism and eventually sink strength in planta.

AB - Sucrose synthase (SuSy) is one key enzyme directly hydrolyzing sucrose to supply substrates for plant metabolism, and is considered to be a biomarker for plant sink strength. Improvement in plant sink strength could lead to enhanced plant growth and yield. Cultivated tomatoes are known to have a narrow genetic diversity, which hampers further breeding for novel and improved traits in new cultivars. In this study, we observed limited genetic variation in SuSy1, SuSy3 and SuSy4 in 53 accessions of cultivated tomato and landraces, but identified a wealth of genetic diversity in 32 accessions of related wild species. The variation in the deduced amino acid sequences was grouped into 23, 22, and 17 distinct haplotypes for SuSy1/3/4, respectively. Strikingly, all known substrate binding sites were highly conserved, as well as most of the phosphorylation sites except in SuSy1. Two SuSy1 and three SuSy3 protein variants were heterologously expressed to study the effect of the amino acid changes on enzyme kinetic properties, i.e. maximal sucrose hydrolyzing capacity (Vmax), affinity for sucrose (Km), and catalytic efficiency (Vmax/Km) at 25°C and 16°C. SuSy1-haplotype#3 containing phosphorylation site Ser-16 did not have an improvement in the kinetic properties compared to the reference SuSy1-haplotype#1 containing Arg-16. Meanwhile SuSy3-haplotype#9 from a wild accession, containing four amino acid changes S53A, S106I, E727D and K741E, showed an increase in Vmax/Km at 16°C compared to the reference SuSy3-haplotype#1. This study demonstrates that SuSy kinetic properties can be enhanced by exploiting natural variation, and the potential of this enzyme to improve sucrose metabolism and eventually sink strength in planta.

U2 - 10.1371/journal.pone.0206636

DO - 10.1371/journal.pone.0206636

M3 - Article

VL - 13

JO - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 10

M1 - e0206636

ER -