TY - JOUR
T1 - Exploring biophysical potential and sustainability of wheat cultivation in Uruguay at the national level
AU - Mantel, S.
AU - van Engelen, V.W.P.
AU - Molfino, J.H.
AU - Resink, J.W.
PY - 2000
Y1 - 2000
N2 - A methodology is presented that explores soil survey information at the national level (1:1 M), generating sustainability indicators for wheat cultivation in Uruguay. Potential yields were calculated for simplified crop production situations under several constraints, such as limitation of water availability calculated from soil physical properties and climatic conditions, and limitation of nutrient availability calculated from soil fertility and climatic conditions. Land quality sufficiency was examined by comparing these yields with the constraint-free yield conditioned only by solar radiation, temperature and the crop's photosynthetic properties. Crop growth was simulated only for areas suitable for the defined agricultural use. Model runs were repeated with inclusion of a topsoil loss scenario over 20 years as defined from an erosion risk analysis. Comparison between crop growth simulations for the two situations, gives an indication of the changes in land quality status, which supplies an indicator for agroecological sustainability.
On the basis of crop growth simulation it is concluded that wheat production constraints in Uruguay appear to be mainly related to water availability limitations, while nutrient availability is near optimal for the suitable soils. The simulated loss of topsoil impacts most on soil physical properties, expressed in reduced water-limited yields. Soil fertility status, evaluated by change in nutrient-limited yields, was little affected by the scenario
AB - A methodology is presented that explores soil survey information at the national level (1:1 M), generating sustainability indicators for wheat cultivation in Uruguay. Potential yields were calculated for simplified crop production situations under several constraints, such as limitation of water availability calculated from soil physical properties and climatic conditions, and limitation of nutrient availability calculated from soil fertility and climatic conditions. Land quality sufficiency was examined by comparing these yields with the constraint-free yield conditioned only by solar radiation, temperature and the crop's photosynthetic properties. Crop growth was simulated only for areas suitable for the defined agricultural use. Model runs were repeated with inclusion of a topsoil loss scenario over 20 years as defined from an erosion risk analysis. Comparison between crop growth simulations for the two situations, gives an indication of the changes in land quality status, which supplies an indicator for agroecological sustainability.
On the basis of crop growth simulation it is concluded that wheat production constraints in Uruguay appear to be mainly related to water availability limitations, while nutrient availability is near optimal for the suitable soils. The simulated loss of topsoil impacts most on soil physical properties, expressed in reduced water-limited yields. Soil fertility status, evaluated by change in nutrient-limited yields, was little affected by the scenario
KW - soil
KW - growth
KW - kenya
U2 - 10.1111/j.1475-2743.2000.tb00208.x
DO - 10.1111/j.1475-2743.2000.tb00208.x
M3 - Article
SN - 0266-0032
VL - 16
SP - 270
EP - 278
JO - Soil Use and Management
JF - Soil Use and Management
IS - 4
ER -