Evaluating two soil carbon models within the global land surface model JSBACH using surface and spaceborne observations of atmospheric CO2

Tea Thum*, Julia E.M.S. Nabel, Aki Tsuruta, Tuula Aalto, Edward J. Dlugokencky, Jari Liski, Ingrid T. Luijkx, Tiina Markkanen, Julia Pongratz, Yukio Yoshida, Sönke Zaehle

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The trajectories of soil carbon in our changing climate are of the utmost importance as soil is a substantial carbon reservoir with a large potential to impact the atmospheric carbon dioxide (CO2) burden. Atmospheric CO2 observations integrate all processes affecting carbon exchange between the surface and the atmosphere and therefore are suitable for carbon cycle model evaluation. In this study, we present a framework for how to use atmospheric CO2 observations to evaluate two distinct soil carbon models (CBALANCE, CBA, and Yasso, YAS) that are implemented in a global land surface model (JSBACH). We transported the biospheric carbon fluxes obtained by JSBACH using the atmospheric transport model TM5 to obtain atmospheric CO2. We then compared these results with surface observations from Global AtmosphereWatch stations, as well as with column XCO2 retrievals from GOSAT (Greenhouse Gases Observing Satellite). The seasonal cycles of atmospheric CO2 estimated by the two different soil models differed. The estimates from the CBALANCE soil model were more in line with the surface observations at low latitudes (0-45°N) with only a 1% bias in the seasonal cycle amplitude, whereas Yasso underestimated the seasonal cycle amplitude in this region by 32 %. Yasso, on the other hand, gave more realistic seasonal cycle amplitudes of CO2 at northern boreal sites (north of 45°N) with an underestimation of 15% compared to a 30% overestimation by CBALANCE. Generally, the estimates from CBALANCE were more successful in capturing the seasonal patterns and seasonal cycle amplitudes of atmospheric CO2 even though it overestimated soil carbon stocks by 225% (compared to an underestimation of 36% by Yasso), and its estimations of the global distribution of soil carbon stocks were unrealistic. The reasons for these differences in the results are related to the different environmental drivers and their functional dependencies on the two soil carbon models. In the tropics, heterotrophic respiration in the Yasso model increased earlier in the season since it is driven by precipitation instead of soil moisture, as in CBALANCE. In temperate and boreal regions, the role of temperature is more dominant. There, heterotrophic respiration from the Yasso model had a larger seasonal amplitude, which is driven by air temperature, compared to CBALANCE, which is driven by soil temperature. The results underline the importance of using sub-annual data in the development of soil carbon models when they are used at shorter than annual timescales.

Original languageEnglish
Pages (from-to)5721-5743
Number of pages23
JournalBiogeosciences
Volume17
Issue number22
DOIs
Publication statusPublished - 23 Nov 2020

Fingerprint Dive into the research topics of 'Evaluating two soil carbon models within the global land surface model JSBACH using surface and spaceborne observations of atmospheric CO2'. Together they form a unique fingerprint.

Cite this