TY - JOUR
T1 - Evaluating sustainable intensification levels of dryland agriculture
T2 - A focus on Xinjiang, China
AU - Yu, Jiawen
AU - Long, Aihua
AU - Lai, Xiaoying
AU - Elbeltagi, Ahmed
AU - Deng, Xiaoya
AU - Gu, Xinchen
AU - Heng, Tong
AU - Cheng, Hui
AU - van Oel, Pieter
PY - 2024/1
Y1 - 2024/1
N2 - Adequate tools for evaluating the Sustainable Intensification of Agriculture (SIA) level are crucial, especially in drylands with limited resources. Based on emergy indices and environmental footprints, We propose an evaluation framework for the case of major crop intensification in Xinjiang, China, and examine the local SIA from 2001 to 2020. The results show that increases in emergy input (EI) of the crop system were achieved with simultaneous increases in water consumption and carbon emissions. The most EI to the system is from economically non-free non-renewable resources (75.1 %), and only 5.4 % from environmentally free renewable resources. The emergy output (EO) of cotton was less than 80 % of wheat and maize, but the carbon footprint (CF) and water footprint (WF) of cotton were much higher than wheat and maize (>1.18 times and > 5.01 times, respectively). We group historical results covering emergy indices, CF, WF, and other production indicators into five dimensions and comprehensively evaluate the level of SIA in Xinjiang according to the changes in the five dimensions. It was found that raising the SIA depended on improving management, productivity, and environmental impact dimension from 2000 to 2005. After 2005, the SIA's down-turning was due to the trade-offs between management, environmental dimensions, and their indicators and the continuous reduction of sustainability of other dimensions. In addition, the progress and realization of SDG 2, SDG 6, SDG 7, SDG 8, SDG 11, and SDG 12 can effectively improve the SIA. Our study serves as a helpful example for evaluating the level of sustainability of intensive agricultural policies not just in Xinjiang but also in other drylands of the world.
AB - Adequate tools for evaluating the Sustainable Intensification of Agriculture (SIA) level are crucial, especially in drylands with limited resources. Based on emergy indices and environmental footprints, We propose an evaluation framework for the case of major crop intensification in Xinjiang, China, and examine the local SIA from 2001 to 2020. The results show that increases in emergy input (EI) of the crop system were achieved with simultaneous increases in water consumption and carbon emissions. The most EI to the system is from economically non-free non-renewable resources (75.1 %), and only 5.4 % from environmentally free renewable resources. The emergy output (EO) of cotton was less than 80 % of wheat and maize, but the carbon footprint (CF) and water footprint (WF) of cotton were much higher than wheat and maize (>1.18 times and > 5.01 times, respectively). We group historical results covering emergy indices, CF, WF, and other production indicators into five dimensions and comprehensively evaluate the level of SIA in Xinjiang according to the changes in the five dimensions. It was found that raising the SIA depended on improving management, productivity, and environmental impact dimension from 2000 to 2005. After 2005, the SIA's down-turning was due to the trade-offs between management, environmental dimensions, and their indicators and the continuous reduction of sustainability of other dimensions. In addition, the progress and realization of SDG 2, SDG 6, SDG 7, SDG 8, SDG 11, and SDG 12 can effectively improve the SIA. Our study serves as a helpful example for evaluating the level of sustainability of intensive agricultural policies not just in Xinjiang but also in other drylands of the world.
KW - Drylands
KW - Emergy
KW - Environmental Footprint
KW - Intensive Agriculture
KW - Sustainable Development
U2 - 10.1016/j.ecolind.2023.111448
DO - 10.1016/j.ecolind.2023.111448
M3 - Article
AN - SCOPUS:85180531515
SN - 1470-160X
VL - 158
JO - Ecological Indicators
JF - Ecological Indicators
M1 - 111448
ER -