TY - JOUR
T1 - European environmental scenarios of chemical bioavailability in freshwater systems
AU - Di Guardo, Antonio
AU - Morselli, Melissa
AU - Morabito, Giuseppe
AU - Semplice, Matteo
AU - Van den Brink, Paul J.
AU - De Laender, Frederik
PY - 2017
Y1 - 2017
N2 - In exposure prediction for environmental risk assessment, the transition to more dynamic and realistic modelling approaches and scenarios has been recently identified as a major challenge, since it would allow a more accurate prediction of bioavailable concentrations and their variations in space and time. In this work, an improved version of the multimedia model ChimERA fate, including a phytoplankton compartment and equations to calculate phytoplankton, detritus and dissolved organic matter variations in time, was developed. The model was parameterized to simulate five dynamic scenarios for shallow meso-eutrophic water bodies based on a latitudinal gradient (in Europe); such scenarios include seasonal profiles of water temperature, phytoplankton biomass, detritus, and dissolved organic matter. Model runs were performed for each scenario for 8 hydrophobic chemicals (PCB congeners), with the aim of investigating the influence of scenario characteristics and compound properties on bioavailable concentrations. The key processes were adsorption/uptake by phytoplankton and deposition to sediment of detritus-bound chemicals. The northern scenarios ("Scandinavia" and "UK") showed the highest bioavailable concentrations, with annual maximum/minimum concentration up to 25; in contrast, for example, maximum concentrations in the "Mediterranean" scenario were lower by a factor of 2 to 9 with respect to the northern ones (depending on chemical hydrophobicity), due to the generally higher biomass and carbon levels, and showed only limited seasonal variability (up to a factor of 4). These results highlight the importance of including biomass and organic carbon dynamics in both modelling approaches and scenarios for the evaluation of exposure concentrations in aquatic environments.
AB - In exposure prediction for environmental risk assessment, the transition to more dynamic and realistic modelling approaches and scenarios has been recently identified as a major challenge, since it would allow a more accurate prediction of bioavailable concentrations and their variations in space and time. In this work, an improved version of the multimedia model ChimERA fate, including a phytoplankton compartment and equations to calculate phytoplankton, detritus and dissolved organic matter variations in time, was developed. The model was parameterized to simulate five dynamic scenarios for shallow meso-eutrophic water bodies based on a latitudinal gradient (in Europe); such scenarios include seasonal profiles of water temperature, phytoplankton biomass, detritus, and dissolved organic matter. Model runs were performed for each scenario for 8 hydrophobic chemicals (PCB congeners), with the aim of investigating the influence of scenario characteristics and compound properties on bioavailable concentrations. The key processes were adsorption/uptake by phytoplankton and deposition to sediment of detritus-bound chemicals. The northern scenarios ("Scandinavia" and "UK") showed the highest bioavailable concentrations, with annual maximum/minimum concentration up to 25; in contrast, for example, maximum concentrations in the "Mediterranean" scenario were lower by a factor of 2 to 9 with respect to the northern ones (depending on chemical hydrophobicity), due to the generally higher biomass and carbon levels, and showed only limited seasonal variability (up to a factor of 4). These results highlight the importance of including biomass and organic carbon dynamics in both modelling approaches and scenarios for the evaluation of exposure concentrations in aquatic environments.
KW - Detritus
KW - Exposure assessment
KW - Fate model
KW - Organic chemical
KW - Phytoplankton biomass
KW - Pond
U2 - 10.1016/j.scitotenv.2016.12.084
DO - 10.1016/j.scitotenv.2016.12.084
M3 - Article
AN - SCOPUS:85008193372
SN - 0048-9697
VL - 580
SP - 1237
EP - 1246
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -