Enhanced nutritional value of chickpea protein concentrate by dry separation and solid state fermentation

Qinhui Xing, Susanne Dekker, Konstantina Kyriakopoulou, Remko M. Boom, Eddy J. Smid, Maarten A.I. Schutyser*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

A sustainable dry processing method to obtain nutritional and functional chickpea products was developed, yielding protein concentrates suited to prepare products without additives. Chickpeas were milled and air-classified into protein and starch-enriched concentrates. Subsequently, spontaneous solid state fermentation (SSF) with daily back-slopping was performed at 37 °C. The dominant autochthonous lactic acid bacteria (LAB) strains in chickpea flour and enriched fractions were Pediococcus pentosaceus and Pediococcus acidilactici. Strains were selected on their ability to metabolise flatulence-causing α-galactosides. SSF reduced the pH of the doughs in 24h from 6.6 to 4.2. After 72 h, concentrations of raffinose and stachyose were reduced by 88.3–99.1%, while verbascose became undetectable. Moreover, phytic acid reduced with 17% while total phenolic contents increased with 119%. Besides the observed differences in smell, texture and colour, the sourdoughs showed 67% higher water-holding capacity. This natural route to produce chickpea concentrates thus increases both the nutritive and technical functionality. Industrial relevance Increasing the sustainability of our food production is required to meet the demand for food of our growing world population. A processing route combining dry fractionation and solid state fermentation is developed to prepare chickpea concentrates with improved nutritional properties. This route is more sustainable as the use of water and thus energy-intensive drying steps are minimised. Moreover, it provides more natural ‘clean-label’ foods, i.e., foods with less additives and minimally processed. Solid state fermentation is used to reduce the presence of anti-nutritional factors, i.e., α-galactosides and phytic acid. Autochthonous LAB were accumulated via back-slopping and employed as starter culture as an alternative to the use of a commercial starter culture. Chickpea sourdoughs with enhanced nutritional quality of chickpea were obtained. The sourdough may be used directly to fortify cereal products like chickpea protein enriched bread or can be dried into a chickpea ingredient for many other applications as well.

Original languageEnglish
Article number102269
JournalInnovative Food Science and Emerging Technologies
Volume59
DOIs
Publication statusPublished - 1 Jan 2020

Fingerprint

Cicer
solid state fermentation
protein concentrates
Nutritive Value
sourdough
Fermentation
nutritive value
Proteins
Galactosides
Phytic Acid
Starters
galactosides
concentrates
starter cultures
Lactic acid
phytic acid
lactic acid bacteria
Cereal products
Lactic Acid
Bacteria

Keywords

  • Air classification
  • Autochthonous microbes
  • Pediococcus spp.
  • Techno-functional properties
  • α-Galactosides

Cite this

@article{5a490545c89140e5ac865ded218b79cc,
title = "Enhanced nutritional value of chickpea protein concentrate by dry separation and solid state fermentation",
abstract = "A sustainable dry processing method to obtain nutritional and functional chickpea products was developed, yielding protein concentrates suited to prepare products without additives. Chickpeas were milled and air-classified into protein and starch-enriched concentrates. Subsequently, spontaneous solid state fermentation (SSF) with daily back-slopping was performed at 37 °C. The dominant autochthonous lactic acid bacteria (LAB) strains in chickpea flour and enriched fractions were Pediococcus pentosaceus and Pediococcus acidilactici. Strains were selected on their ability to metabolise flatulence-causing α-galactosides. SSF reduced the pH of the doughs in 24h from 6.6 to 4.2. After 72 h, concentrations of raffinose and stachyose were reduced by 88.3–99.1{\%}, while verbascose became undetectable. Moreover, phytic acid reduced with 17{\%} while total phenolic contents increased with 119{\%}. Besides the observed differences in smell, texture and colour, the sourdoughs showed 67{\%} higher water-holding capacity. This natural route to produce chickpea concentrates thus increases both the nutritive and technical functionality. Industrial relevance Increasing the sustainability of our food production is required to meet the demand for food of our growing world population. A processing route combining dry fractionation and solid state fermentation is developed to prepare chickpea concentrates with improved nutritional properties. This route is more sustainable as the use of water and thus energy-intensive drying steps are minimised. Moreover, it provides more natural ‘clean-label’ foods, i.e., foods with less additives and minimally processed. Solid state fermentation is used to reduce the presence of anti-nutritional factors, i.e., α-galactosides and phytic acid. Autochthonous LAB were accumulated via back-slopping and employed as starter culture as an alternative to the use of a commercial starter culture. Chickpea sourdoughs with enhanced nutritional quality of chickpea were obtained. The sourdough may be used directly to fortify cereal products like chickpea protein enriched bread or can be dried into a chickpea ingredient for many other applications as well.",
keywords = "Air classification, Autochthonous microbes, Pediococcus spp., Techno-functional properties, α-Galactosides",
author = "Qinhui Xing and Susanne Dekker and Konstantina Kyriakopoulou and Boom, {Remko M.} and Smid, {Eddy J.} and Schutyser, {Maarten A.I.}",
year = "2020",
month = "1",
day = "1",
doi = "10.1016/j.ifset.2019.102269",
language = "English",
volume = "59",
journal = "Innovative Food Science and Emerging Technologies",
issn = "1466-8564",
publisher = "Elsevier",

}

TY - JOUR

T1 - Enhanced nutritional value of chickpea protein concentrate by dry separation and solid state fermentation

AU - Xing, Qinhui

AU - Dekker, Susanne

AU - Kyriakopoulou, Konstantina

AU - Boom, Remko M.

AU - Smid, Eddy J.

AU - Schutyser, Maarten A.I.

PY - 2020/1/1

Y1 - 2020/1/1

N2 - A sustainable dry processing method to obtain nutritional and functional chickpea products was developed, yielding protein concentrates suited to prepare products without additives. Chickpeas were milled and air-classified into protein and starch-enriched concentrates. Subsequently, spontaneous solid state fermentation (SSF) with daily back-slopping was performed at 37 °C. The dominant autochthonous lactic acid bacteria (LAB) strains in chickpea flour and enriched fractions were Pediococcus pentosaceus and Pediococcus acidilactici. Strains were selected on their ability to metabolise flatulence-causing α-galactosides. SSF reduced the pH of the doughs in 24h from 6.6 to 4.2. After 72 h, concentrations of raffinose and stachyose were reduced by 88.3–99.1%, while verbascose became undetectable. Moreover, phytic acid reduced with 17% while total phenolic contents increased with 119%. Besides the observed differences in smell, texture and colour, the sourdoughs showed 67% higher water-holding capacity. This natural route to produce chickpea concentrates thus increases both the nutritive and technical functionality. Industrial relevance Increasing the sustainability of our food production is required to meet the demand for food of our growing world population. A processing route combining dry fractionation and solid state fermentation is developed to prepare chickpea concentrates with improved nutritional properties. This route is more sustainable as the use of water and thus energy-intensive drying steps are minimised. Moreover, it provides more natural ‘clean-label’ foods, i.e., foods with less additives and minimally processed. Solid state fermentation is used to reduce the presence of anti-nutritional factors, i.e., α-galactosides and phytic acid. Autochthonous LAB were accumulated via back-slopping and employed as starter culture as an alternative to the use of a commercial starter culture. Chickpea sourdoughs with enhanced nutritional quality of chickpea were obtained. The sourdough may be used directly to fortify cereal products like chickpea protein enriched bread or can be dried into a chickpea ingredient for many other applications as well.

AB - A sustainable dry processing method to obtain nutritional and functional chickpea products was developed, yielding protein concentrates suited to prepare products without additives. Chickpeas were milled and air-classified into protein and starch-enriched concentrates. Subsequently, spontaneous solid state fermentation (SSF) with daily back-slopping was performed at 37 °C. The dominant autochthonous lactic acid bacteria (LAB) strains in chickpea flour and enriched fractions were Pediococcus pentosaceus and Pediococcus acidilactici. Strains were selected on their ability to metabolise flatulence-causing α-galactosides. SSF reduced the pH of the doughs in 24h from 6.6 to 4.2. After 72 h, concentrations of raffinose and stachyose were reduced by 88.3–99.1%, while verbascose became undetectable. Moreover, phytic acid reduced with 17% while total phenolic contents increased with 119%. Besides the observed differences in smell, texture and colour, the sourdoughs showed 67% higher water-holding capacity. This natural route to produce chickpea concentrates thus increases both the nutritive and technical functionality. Industrial relevance Increasing the sustainability of our food production is required to meet the demand for food of our growing world population. A processing route combining dry fractionation and solid state fermentation is developed to prepare chickpea concentrates with improved nutritional properties. This route is more sustainable as the use of water and thus energy-intensive drying steps are minimised. Moreover, it provides more natural ‘clean-label’ foods, i.e., foods with less additives and minimally processed. Solid state fermentation is used to reduce the presence of anti-nutritional factors, i.e., α-galactosides and phytic acid. Autochthonous LAB were accumulated via back-slopping and employed as starter culture as an alternative to the use of a commercial starter culture. Chickpea sourdoughs with enhanced nutritional quality of chickpea were obtained. The sourdough may be used directly to fortify cereal products like chickpea protein enriched bread or can be dried into a chickpea ingredient for many other applications as well.

KW - Air classification

KW - Autochthonous microbes

KW - Pediococcus spp.

KW - Techno-functional properties

KW - α-Galactosides

U2 - 10.1016/j.ifset.2019.102269

DO - 10.1016/j.ifset.2019.102269

M3 - Article

VL - 59

JO - Innovative Food Science and Emerging Technologies

JF - Innovative Food Science and Emerging Technologies

SN - 1466-8564

M1 - 102269

ER -