Enhanced foraging in robot swarms using collective levy walks

Johannes Nauta, Stef Van Havermaet, Pieter Simoens, Yara Khaluf

Research output: Chapter in Book/Report/Conference proceedingConference paperAcademicpeer-review

16 Citations (Scopus)

Abstract

A key aspect of foraging in robot swarms is optimizing the search efficiency when both the environment and target density are unknown. Hence, designing optimal exploration strategies is desirable. This paper proposes a novel approach that extends the individual Lévy walk to a collective one. To achieve this, we adjust the individual motion through applying an artificial potential field method originating from local communication. We demonstrate the effectiveness of the enhanced foraging by confirming that the collective trajectory follows a heavy-tailed distribution over a wide range of swarm sizes. Additionally, we study target search efficiency of the proposed algorithm in comparison with the individual Lévy walk for two different types of target distributions: Homogeneous and heterogeneous. Our results highlight the advantages of the proposed approach for both target distributions, while increasing the scalability to large swarm sizes. Finally, we further extend the individual exploration algorithm by adapting the Lévy walk parameter α, altering the motion pattern based on a local estimation of the target density. This adaptive behavior is particularly useful when targets are distributed in patches.

Original languageEnglish
Title of host publicationECAI 2020 - 24th European Conference on Artificial Intelligence, including 10th Conference on Prestigious Applications of Artificial Intelligence, PAIS 2020 - Proceedings
EditorsGiuseppe De Giacomo, Alejandro Catala, Bistra Dilkina, Michela Milano, Senen Barro, Alberto Bugarin, Jerome Lang
PublisherIOS Press
Pages171-178
Number of pages8
ISBN (Electronic)9781643681009
DOIs
Publication statusPublished - 24 Aug 2020
Externally publishedYes
Event24th European Conference on Artificial Intelligence, ECAI 2020, including 10th Conference on Prestigious Applications of Artificial Intelligence, PAIS 2020 - Santiago de Compostela, Online, Spain
Duration: 29 Aug 20208 Sept 2020

Publication series

NameFrontiers in Artificial Intelligence and Applications
Volume325
ISSN (Print)0922-6389

Conference/symposium

Conference/symposium24th European Conference on Artificial Intelligence, ECAI 2020, including 10th Conference on Prestigious Applications of Artificial Intelligence, PAIS 2020
Country/TerritorySpain
CitySantiago de Compostela, Online
Period29/08/208/09/20

Fingerprint

Dive into the research topics of 'Enhanced foraging in robot swarms using collective levy walks'. Together they form a unique fingerprint.

Cite this