Enhanced adsorption of polystyrene nanoplastics (PSNPs) onto oxidized corncob biochar with high pyrolysis temperature

Abdoul Salam Issiaka Abdoul Magid, Md Shafiqul Islam, Yali Chen*, Liping Weng, Jinbo Li, Jie Ma, Yongtao Li

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


Plastic pollution has become a global threat in the natural environment, and an urgent remedial measure is needed to reduce the negative effects caused by plastic pollutants. In the current study, the effects of pyrolysis temperature (500 °C, 700 °C, and 900 °C) and aging on the adsorption of polystyrene nanoplastics (PSNPs) onto corncob biochar were systematically assessed with kinetic, isotherm, pH-dependent adsorption experiments, FTIR and XPS spectroscopy, and DLVO calculations. The oxidation was done with 5% of HNO3/H2SO4 to simulate long-term oxidative aging of biochar in the environment. The results showed that the specific surface area, hydrophobicity, and aromaticity of biochar increased with pyrolysis temperature, whereas the specific surface area and amounts of oxygen-containing groups increased after oxidation. The adsorption mechanism of PSNPs onto the biochar was explored based on the correlation between biochar properties and adsorption parameters derived from adsorption isotherms. Overall, the adsorption capacity of biochar for PSNPs increased with increased pyrolysis temperature and after aging. While the increase of specific surface area was considered the major factor leading to the increase of the adsorption, the variation in surface properties also played an important role. Pore filling, hydrophobic interaction, and hydrogen bonding may all be involved in PSNPs adsorption to biochar. However, the hydrophobic interaction might be more important for the fresh biochar, whereas hydrogen bonding involving oxygen-containing groups might make a bigger contribution to PSNPs adsorption to oxidized biochar. The pH experiments revealed that PSNPs adsorption decreased in general with the increase of pH, indicating that electrostatic repulsion played a vital role in the PSNPs adsorption process. The results of this study indicate that biochar can be potentially applied to immobilize plastic particles in terrestrial ecosystems such as in soil or groundwater, and the immobilization could be enhanced via artificial oxidation or aging of biochar in the natural environment.

Original languageEnglish
Article number147115
JournalScience of the Total Environment
Publication statusPublished - 25 Aug 2021


  • Adsorption
  • Corncob
  • Nanoplastics
  • Oxidized biochar
  • Pyrolysis temperature

Fingerprint Dive into the research topics of 'Enhanced adsorption of polystyrene nanoplastics (PSNPs) onto oxidized corncob biochar with high pyrolysis temperature'. Together they form a unique fingerprint.

Cite this