TY - JOUR
T1 - Enforced expression of GATA-3 in transgenic mice inhibits Th1 differentiation and induces the formation of a T1/ST2-expressing Th2-committed T Cell compartment in vivo
AU - Nawijn, M.C.
AU - Dingjan, G.M.
AU - Ferreira, R.
AU - Lambrecht, B.N.
AU - Karis, A.
AU - Grosveld, F.
AU - Savelkoul, H.F.J.
AU - Hendriks, R.W.
PY - 2001
Y1 - 2001
N2 - The transcription factor GATA-3 is essential for early T cell development and differentiation of naive CD4(+) T cells into Th2 effector calls. To study the function of GATA-3 during T cell-mediated immune responses in vivo, we investigated CD2-GATA3-transgenic mice in which GATA-3 expression is driven by the CD2 locus control region. Both in the CD4(+) and the CD8(+) T cell population the proportion of cells exhibiting a CD44(high)CD45RB(low)CD62L(low) Ag-experienced phenotype was increased. In CD2-GATA3-transgenic mice, large fractions of peripheral CD4(+) T cells expressed the IL-1 receptor family member T1/ST2, indicative of advanced Th2 commitment. Upon in vitro T call stimulation, the ability to produce IL-2 and IFN-gamma was decreased. Moreover, CD4(+) T cells manifested rapid secretion of the Th2 cytokines IL-4, IL-5, and IEL-10, reminiscent of Th2 memory cells. In contrast to wild-type CD4(+) cells, which lost GATA-3 expression when cultured under Th1-polarizing conditions, CD2-GATA3-transgenic CD4(+) cells maintained expression of GATA-3 protein. Under Th1 conditions, cellular proliferation of CD2-GATA3-transgenic CD4(+) cells was severely hampered, IFN-gamma production was decreased and Th2 cytokine production was increased. Enforced GATA-3 expression inhibited Thl-mediated in vivo responses, such as Ag-specific IgG2a production or a delayed-type hypersensitivity response to keyhole limpet hemocyanin. Collectively, these observations indicate that enforced GATA-3 expression selectively inhibits Th1 differentiation and induces Th2 differentiation. The increased functional capacity to secrete Th2 cytokines, along with the increased expression of surface markers for Ag-experienced Th2-committed cells, would argue for a role of GATA-3 in Th2 memory formation.
AB - The transcription factor GATA-3 is essential for early T cell development and differentiation of naive CD4(+) T cells into Th2 effector calls. To study the function of GATA-3 during T cell-mediated immune responses in vivo, we investigated CD2-GATA3-transgenic mice in which GATA-3 expression is driven by the CD2 locus control region. Both in the CD4(+) and the CD8(+) T cell population the proportion of cells exhibiting a CD44(high)CD45RB(low)CD62L(low) Ag-experienced phenotype was increased. In CD2-GATA3-transgenic mice, large fractions of peripheral CD4(+) T cells expressed the IL-1 receptor family member T1/ST2, indicative of advanced Th2 commitment. Upon in vitro T call stimulation, the ability to produce IL-2 and IFN-gamma was decreased. Moreover, CD4(+) T cells manifested rapid secretion of the Th2 cytokines IL-4, IL-5, and IEL-10, reminiscent of Th2 memory cells. In contrast to wild-type CD4(+) cells, which lost GATA-3 expression when cultured under Th1-polarizing conditions, CD2-GATA3-transgenic CD4(+) cells maintained expression of GATA-3 protein. Under Th1 conditions, cellular proliferation of CD2-GATA3-transgenic CD4(+) cells was severely hampered, IFN-gamma production was decreased and Th2 cytokine production was increased. Enforced GATA-3 expression inhibited Thl-mediated in vivo responses, such as Ag-specific IgG2a production or a delayed-type hypersensitivity response to keyhole limpet hemocyanin. Collectively, these observations indicate that enforced GATA-3 expression selectively inhibits Th1 differentiation and induces Th2 differentiation. The increased functional capacity to secrete Th2 cytokines, along with the increased expression of surface markers for Ag-experienced Th2-committed cells, would argue for a role of GATA-3 in Th2 memory formation.
KW - transcription factor gata-3
KW - brutons tyrosine kinase
KW - cytokine gene-expression
KW - ifn-gamma production
KW - interferon-gamma
KW - immune-responses
KW - natural-killer
KW - cutting edge
KW - il-4
KW - interleukin-4
M3 - Article
SN - 0022-1767
VL - 167
SP - 724
EP - 732
JO - The Journal of Immunology
JF - The Journal of Immunology
IS - 2
ER -